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Campus Sur, 15782 Santiago, Spain

Abstract

In this paper, we define a new nonlinear wavelet-based estimator of the regression function

under random left-truncation. We provide an asymptotic expression for the mean integrated

squared error (MISE) of the estimator. It is assumed that the observations form a station-

ary α-mixing sequence. The nonlinear wavelet-based estimator of the covariate’s density is

considered as well. Unlike for kernel estimators, the MISE expression of the wavelet-based

estimators is not affected by the presence of discontinuities in the curves. The finite sample

behaviour of the proposed estimators is explored through simulations
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1 Introduction

The importance of wavelets in curve estimation is well known since the initial works by Kerky-

acharian and Picard (1992, 1993), Donoho and Johnstone (1994, 1995), and Donoho et al.

(1995, 1996). In these papers, adaptation of wavelets (in the minimax sense) to the degree of

smoothness of the underlying function is analyzed, for a wide range of functional spaces and

a number of loss functions. This is a remarkable property of the wavelet method when com-

pared to other common estimation techniques (such as the kernel method) which may fail in

unsmooth situations. Hall and Patil (1995) gave for the first time an asymptotic expression of

the mean integrated squared error (MISE) of a nonlinear wavelet density estimator, comparing

its performance to that corresponding to the kernel density estimator. These authors showed

that the asymptotic MISE formula is the same in both the smooth and unsmooth density cases,
1Corresponding author. E-mail address: hyliang83@yahoo.com (H. Y. Liang)
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a fact that is not true for the kernel method. Similar results are available for the problem of

estimating a regression function, see for example Hall and Patil (1996).

In some fields as Reliability and Survival Analysis, right-censored or left-truncated data are

often encountered. Some authors have investigated wavelet density estimation and wavelet re-

gression with censored data. For example, Antoniadis et al. (1999) considered linear wavelet

density estimation under random censoring, providing the MISE convergence rate under smooth-

ness assumptions on the density function; Li (2003) proposed a non-linear wavelet estimator of

the density function with censored data and derived a result similar to the main result, Theorem

2.1, of Hall and Patil (1995). Also, Rodŕıguez-Casal and de Uña-Álvarez (2004) investigated the

asymptotic expression of the MISE for the non-linear wavelet estimator of the density function

under the Koziol-Green model of random censorship. Finally, Li et al. (2008) considered non-

linear wavelet regression in the censored case. However, there is not much research on wavelet

estimators with left-truncated data. This is an important gap we fill with the present work.

Another existing gap in wavelet estimation from incomplete data is that all the mentioned

references are devoted to independent data. However, the dependent data scenario is an impor-

tant one in a number of applications with survival data. For example, when sampling clusters of

individuals (family members, or repeated measurements on the same individual, for example),

lifetimes within clusters are typically correlated (see Kang and Koheler, 1997, or Cai et al.,

2000). In these applications, short-range dependence conditions as α-mixing have been found

to be realistic (Cai and Kim, 2003), and some theory has been adapted accordingly. With com-

plete α-mixing data, Liang et al. (2005) discussed the global L2 error of the nonlinear wavelet

estimator of the density function in the Besov space; while Truoug and Patil (2001) gave the

MISE result in nonlinear wavelet regression. The case of (complete) long memory data was

considered by Li and Xiao (2006, 2007), who provided the asymptotic MISE of the nonlinear

wavelet-based regression estimator. Interestingly, the long memory (or long-range dependence)

situation differs from short-range dependence and from the independent case in that it leads to

slower convergence rates of the estimator. Once again, there is little or no literature devoted to

wavelet estimation with censored and/or truncated dependent data. In this paper, we focus on

nonlinear wavelets for the estimation of the covariable density and the regression function with

left-truncated, dependent data.

Let Y be a response variable with continuous distribution function (df) F and let X be a

continuous univariate covariable taking its values in [0, 1] with df V and density v. In nonpara-

metric statistics, a smooth regression function is commonly used to describe the relationship
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between Y and X. The regression function at a point x ∈ [0, 1] is the conditional expectation

of Y given X = x, and it is given by

E[Y |X = x] := m(x) x ∈ [0, 1], (1.1)

which can be written as m(x) = h(x)/v(x), where h(x) =
∫

R yf(x, y)dy with f(·, ·) being the

joint density function of (X,Y ). In practice, the response variable Y – a variable of interest,

referred to hereafter as the lifetime, may be subject to right censoring and/or left truncation.

In this paper we are interested in the left truncation model. Left-truncated data occur in

astronomy, economics, epidemiology and biometry; see, e.g., Woodroofe (1985), Feigelson and

Babu (1992), Wang et al. (1986), Tsai et al. (1987) and He and Yang (1994).

Under the assumption that the lifetime observations are mutually independent, regression

with left-truncated data has been considered in a number of papers. Gross and Lai (1996)

introduced linear regression for left-truncated and right-censored data, while Park and Hwang

(2003) investigated regression depth in the same scenario. In a completely nonparametric setup,

Iglesias-Pérez and González-Manteiga (1999) and Iglesias-Pérez (2003) considered respectively

estimation of a conditional distribution and its quantiles. Also, Park (2004) gave the optimal con-

vergence rate for B-splines regression under truncation and censorship. Recently, Ould-Säıd and

Lemdani (2006) introduced a kernel estimator of the regression function under left-truncation,

and investigated its asymptotic properties under independent and identically distributed (i.i.d.)

framework. In this paper we define a new nonlinear wavelet-based estimator of the regression

function under the left-truncation model, and establish an asymptotic expression of the MISE

for the estimator of the regression function when the data exhibit some kind of dependence.

Also, the MISE result of the nonlinear wavelet-based estimator of the covariable’s density is

considered.

Let {(Xk, Yk, Tk), k ≥ 1} be a sequence of random vectors from (X,Y, T ), where T is the

truncation variable. For the components of (X,Y, T ), in addition to the assumptions and nota-

tion for X and Y we made above, we assume throughout that T is independent of (X,Y ), and T

has continuous df G. Let F (·, ·) be the joint df of the random variable (X,Y ). Without loss of

generality, we assume that both Y and T are nonnegative random variables, as usual in survival

analysis. In the random left-truncation model, the lifetime Yi is interfered by the truncation

random variable Ti in such a way that both Yi and Ti are observable only when Yi ≥ Ti, whereas

neither is observed if Yi < Ti for i = 1, · · · , N , where N is the potential sample size. Due to the

occurrence of truncation, the N is unknown, and n – the size of the actually observed sample,
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is random with n ≤ N . Let θ = P(Y ≥ T ) be the probability that the random variable Y is

observable. Since θ = 0 implies that no data can be observed, we suppose throughout the paper

that θ > 0.

Since N is unknown and n is known (although random), our results will not be stated with

respect to the probability measure P (related to the N -sample) but will involve the conditional

probability P with respect to the actually observed n-sample. Also E and E will denote the

expectation operators under P and P , respectively.

In the sequel, the observed sample {(Xk, Yk, Tk), 1 ≤ k ≤ n} is assumed to be a stationary

α-mixing sequence. Recall that a sequence {ζk, k ≥ 1} is said to be α-mixing if the α-mixing

coefficient

α(n) := sup
k≥1

sup{|P (AB)− P (A)P (B)| : A ∈ F∞n+k, B ∈ Fk1 }

converges to zero as n→∞, where Fml denotes the σ-algebra generated by ζl, ζl+1, . . . , ζm with

l ≤ m. Among various mixing conditions used in the literature, α-mixing is reasonably weak

and has many practical applications; see, e.g., Doukhan (1994), page 99, for more details. In

particular, the stationary autoregressive-moving average (ARMA) processes, which are widely

applied in time series analysis, are α-mixing with exponential mixing coefficient, i.e., α(k) =

O(ρk) for some 0 < ρ < 1. As, mentioned α-mixing has been used in applications with clustered

survival data see, for instance, Cai and Kim 2003.

The rest of this paper is organized as follows. In the next section, we give some notations

for the left-truncation model. Basic elements of the wavelet theory, and the definition of the

nonlinear wavelet-based estimators ofm(·), v(·) and h(·) are given too. Main results are described

in Section 3, their proofs are given in Section 4. Section 5 analyzes the finite sample properties

through a simulation study. In Appendix, we collect some preliminary lemmas, which are used

in Section 4.

2 Notations and Wavelet-based Estimators

Following Stute (1993) the conditional dfs of Y and T given no occurrence of the truncation are

F ∗(y) = P (Y ≤ y) = P(Y ≤ y|Y ≥ T ) = θ−1

∫ y

0
G(u)dF (u)

and G∗(y) = P(T ≤ y|Y ≥ T ) = θ−1
∫∞

0 G(y ∧ u)dF (u), which can be estimated by

F ∗n(y) = n−1
n∑
i=1

I(Yi ≤ y) and G∗n(y) = n−1
n∑
i=1

I(Ti ≤ y),
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respectively, where I(·) is the indicator function.

Since C(y) = P(T ≤ y ≤ Y |Y ≥ T ) = θ−1G(y)[1 − F (y)] = G∗(y) − F ∗(y), the empirical

estimator of C(y) is defined by Cn(y) = n−1
∑n

i=1 I(Ti ≤ y ≤ Yi) = G∗n(y) − F ∗n(y−), where

F ∗n(y−) denotes the left-limit of F ∗n at y.

Following the idea of Lynden-Bell (1971), the nonparametric maximum likelihood estimators

of F and G are given by

1− Fn(y) =
∏
i:Yi≤y

(
1− 1

nCn(Yi)

)
and Gn(y) =

∏
i:Ti>y

(
1− 1

nCn(Ti)

)
.

The estimator of θ is defined by θn = Gn(y)[1− Fn(y−)]C−1
n (y). He and Yang (1998) (devoted

to the i.i.d. setting) proved that θn does not depend on y and its value can then be obtained

for any y such that Cn(y) 6= 0.

Now we introduce some notation corresponding to wavelets. Let φ(x) and ψ(x) be father and

mother wavelets, having the properties: φ and ψ are bounded and compactly supported;
∫
φ2 =∫

ψ2 = 1, µk =
∫
ykψ(y)dy = 0 for 0 ≤ k ≤ r − 1 and µr = r!κ, where κ = (r!)−1

∫
yrψ(y)dy.

Therefore, the functions

φj(x) = p1/2φ(px− j), ψij(x) = p
1/2
i ψ(pix− j), x ∈ R

for arbitary p > 0, i, j ∈ Z, i ≥ 0 and pi = p2i, are orthonormal:∫
φj1φj2 = δj1j2 ,

∫
ψi1j1ψi2j2 = δi1i2δj1j2 ,

∫
φj1ψij2 = 0, (2.1)

where δij denotes the Kronecker delta [i.e. δij = 1, if i = j; 0, otherwise], and the system

{φj(x), ψij(x), i, j ∈ Z, i ≥ 0} is an orthonormal basis for the space L2(R). For more on wavelets

see Daubechies (1992) or Härdle et al. (1998).

In this note, the regression function m, function h and density v are supported on the unit

interval [0, 1]. Hence, without loss of generality, we may and will assume that φ and ψ are

compactly supported on [0, 1]. For every function v in L2([0, 1]), we have the following wavelet

expansion:

v(x) =
p−1∑
j=0

ajφj(x) +
∞∑
i=0

pi−1∑
j=0

aijψij(x), (2.2)

where aj =
∫
vφj and aij =

∫
vψij are the wavelet coefficients of the function v(·) and the series

in (2.2) converges in L2([0, 1]). Notice that, in order to simplify the notation, p − 1 and pi − 1

denote bpc − 1 and bpic − 1, respectively, where bzc is the integer part of z.
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Note that in our application aj =
∫
vφj =

∫
φjdV and hence an estimator of aj (resp. of aij)

can be constructed on the basis of any given estimator for the covariate’s cumulative distribution

function V (·). As usually with truncated data, ordinary empiricals fail to be consistent due to

the presence of biased data in the sampling; hence, some building of a specific estimator is

needed to overcome this issue.

For any df H, let aH = inf{y : H(y) > 0} and bH = sup{y : H(y) < 1} be its two endpoints.

Following the idea of Ould-Säıd and Lemdani (2006), we build an estimator of V (·). First, we

consider the conditional joint distribution of (X,Y, T )

H∗(x, y, t) = P(X ≤ x, Y ≤ y, T ≤ t|Y ≥ T ) =
1
θ

∫
u≤x

∫
aG≤w≤y

G(w ∧ t)F (du, dw).

Taking t = +∞, we get the conditional joint df of (X,Y )

F ∗(x, y) := P(X ≤ x, Y ≤ y|Y ≥ T ) = θ−1

∫
u≤x

∫
aG≤w≤y

G(w)F (du, dw),

which by differentiating gives

F (dx, dy) = θG−1(y)F ∗(dx, dy) for y > aG. (2.3)

Integrating over y we get the df of X: V (x) = θ
∫
u≤x

∫
y≥aG

1
G(y)F

∗(du, dy). A natural estimator

of V is then given by

Vn(x) =
θn
n

n∑
k=1

1
Gn(Yk)

I(Xk ≤ x). (2.4)

Note that in Eq. (2.4) and the forthcoming formulae, the sum is taken only for k such that

Gn(Yk) 6= 0. In view of (2.4), the proposed non-linear wavelet estimator of v(x) is

v̂(x) =
p−1∑
j=0

âjφj(x) +
q−1∑
i=0

pi−1∑
j=0

âijI(|âij | > δ)ψij(x), (2.5)

where δ > 0 is a “threshold” and q ≥ 1 is another smoothing parameter, and the wavelet

coefficients âj and âij are defined as follows:

âj =
∫
φjdVn =

θn
n

n∑
k=1

1
Gn(Yk)

φj(Xk), âij =
∫
ψijdVn =

θn
n

n∑
k=1

1
Gn(Yk)

ψij(Xk). (2.6)

Similarly, as for v, if the function h is square-integrable then its wavelet expansion is given by

h(x) =
p−1∑
j=0

bjφj(x) +
∞∑
i=0

pi−1∑
j=0

bijψij(x), x ∈ [0, 1], (2.7)
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where bj =
∫
hφi and bij =

∫
hψij . Note that Hn(x) = θn

n

∑n
k=1

Yk
Gn(Yk)I(Xk ≤ x) is an estimator

of H(x) =
∫
u≤x h(u)du (see Ould-Säıd and Lemdani (2006)). So, the proposed non-linear

wavelet estimator of h(x) is

ĥ(x) =
p−1∑
j=0

b̂jφj(x) +
q−1∑
i=0

pi−1∑
j=0

b̂ijI(|b̂ij | > δ)ψij(x), (2.8)

where b̂j = θn
n

∑n
k=1

Yk
Gn(Yk)φj(Xk), b̂ij = θn

n

∑n
k=1

Yk
Gn(Yk)ψij(Xk). Further, from (2.5) and (2.8),

a wavelet estimator of m(x) is given by m̂(x) = ĥ(x)/v̂(x).

3 Main Results

In the sequel, let C,C0, C1, · · · and c denote generic finite positive constants, whose values are

unimportant and may change from line to line. An = O(Bn) stands for An ≤ CBn. Throughout

this paper, we assume that

aG < aF bG ≤ bF <∞. (3.1)

In order to formulate the main results, we need to impose the following assumptions.

(A1) For all integers j ≥ 1, the joint conditional density v∗j (·, ·) of X1 and Xj+1 exists and

satisfies v∗j (x, x
′) ≤ C0 for all x, x′ ∈ [0, 1].

(A2) The density v(·) satisfies v(x) ≥ C1 for x ∈ [0, 1].

(A3) The smoothing parameters p, q and δ are functions of n. Suppose that p → ∞, q → ∞

as n → ∞ in such a manner that pqδ2 = O(n−ε) for some 0 < ε < 1, p2r+1δ2 → ∞, δ ≥

C3(n−1 log n)1/2.

Remark 3.1 If v(x) in (A2) is continuous on [0, 1], then v(x) ≤ C2. Truoug and Patil (2001)

used the assumptions C1 ≤ v(x) ≤ C2, (A3) as well as other conditions. In i.i.d. setting, the

assumption (A3) except pqδ2 = O(n−ε) for some 0 < ε < 1 had been used by some authors, such

as Hall and Patil (1995), Li (2003) and Rodŕıguez-Casal and de Uña-Álvarez (2004).

Theorem 3.1 In addition to the conditions on φ and ψ stated in Section 2 and the assumptions

(A1)-(A3) and (3.1), let α(k) = O(k−λ) for some

λ ≥ max{(2− ε)/ε, 3 + 4r, 1 + (2r + 1)/ε, (τ − 1)(2τ + 1)(2− ε)/(2ε(τ − 2))}, (3.2)

7



where τ > 2. Assume that the r-th derivatives h(r) and v(r) are continuous and bounded, and

ε(λ+ 1 + 2b) + 2b/(2r + 1) ≥ 2(b+ 1) for b > 1. (3.3)

Then,

(i) E
∣∣∣ ∫ (v̂ − v)2 −

{
θn−1p

∫ ∫ f(x,y)
G(y) dxdy + κ2(1− 2−2r)−1p−2r

∫
v(r)2

}∣∣∣ = o(n−1p+ p−2r).

(ii) E
∣∣∣ ∫ (ĥ− h)2 −

{
θn−1p

∫ ∫ y2f(x,y)
G(y) dxdy + κ2(1− 2−2r)−1p−2r

∫
h(r)2

}∣∣∣ = o(n−1p+ p−2r).

(iii) Let r > 1. Suppose that (r + 1)/(2r + 1) ≤ ε < 2r/(2r + 1) and p2r+1 = O(n), then∫
(m̂−m)2 = Op(n−1p+ p−2r).

Moreover, if p is chosen of size n1/(2r+1), then
∫

(m̂−m)2 = Op(n−2r/(2r+1)).

Remark 3.2 (a) In the proof procedure of Theorem 3.1, in order to handle covariance part

(see Step 1 below) we use assumption (A1), which is redundant for independent setting.

(b) In Theorem 3.1, if we replace α(k) = O(k−λ) by the exponential decay α(k) = O(ρk) for

some 0 < ρ < 1, then (3.2) and (3.3) are automatically satisfied. While, Truoug and Patil

(2001) used the assumption α(k) = O(ρk), hence, our α-mixing conditions are weaker than

that in Truoug and Patil (2001).

(c) For the sake of generality, we assume that τ > 2 in (3.2) and b > 1 in (3.3), here τ > 2

and b > 1 are any fixed, for example, taking τ = 3, b = 2. Actually, by appropriate

choosing for τ, b, ε and r, inequalities (3.2) and (3.3) can be specialized.

In Theorem 3.1, we have assumed that the functions h and v are r-times continuously

differentiable for simplicity and convenience of the exposition. However, if h(r) and v(r) are only

piecewise continuous, Theorem 3.1 still holds, as stated in the following result.

Theorem 3.2 In Theorem 3.1, let the derivatives h(r) and v(r) is only piecewise continuous,

i.e., there exist points x0 = 0 < x1 < x2 < · · · < xN < 1 = xN+1 such that the first r derivatives

of h and v exist and are bounded and continuous on (xi, xi+1) for 0 ≤ i ≤ N , with left- and

right-hand limits. In particular, h and v themself may be only piecewise continuous. Assume

that p2r+1
q n−2r → ∞. Then the conclusions (i)-(ii) in Theorem 3.1 still hold, and also (iii) in

Theorem 3.1 remains true when v(r) is continuous and bounded.
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Remark 3.3 (a) The error rates in our Theorems are same as that in Hall and Patil (1996)

for i.i.d. complete data, and that in Truoug and Patil (2001) for α-mixing complete data.

(b) Compared with the corresponding kernel estimator, the wavelet analogue of the bandwidth

hn of the kernel estimator is p−1. As point out by Hall and Patil (1996), the variance

component of the integrated squared error is of size n−1p (Compare (nhn)−1 in the case

of a kernel estimator) and the squared bias component is of p−2r (Compare h2r
n for an

rth-order kernel estimator), the optimal size of p is cn1/(2r+1).

(c) By choosing p ∼ n1/(2r+1) it can be shown that the mean integrated squared errors satisfy

E

∫
(v̂ − v)2 ∼ θn−1p

∫ ∫
f(x, y)
G(y)

dxdy + p−2rκ2(1− 2−2r)−1

∫
v(r)2 ∼ n−2r/(2r+1),

E

∫
(ĥ− h)2 ∼ θn−1p

∫ ∫
y2f(x, y)
G(y)

dxdy + κ2(1− 2−2r)−1p−2r

∫
h(r)2 ∼ n−2r/(2r+1).

4 Proofs of Main Results

We are now ready to prove our main results.

Proof of Theorem 3.1. We only prove (i) and (iii), the proof of (ii) is similar to that of (i) under

(3.1). First, we prove (i). It follows from the orthogonality of the wavelet basis functions that∫
(v̂ − v)2

=
p−1∑
j=0

(âj − aj)2 +
q−1∑
i=0

pi−1∑
j=0

a2
ijI(|âij | ≤ δ) +

q−1∑
i=0

pi−1∑
j=0

(âij − aij)2I(|âij | > δ) +
∞∑
i=q

pi−1∑
j=0

a2
ij

:= S1 + S2 + S3 + S4. (4.1)

It suffices to show that

E|S1 − θn−1p

∫ ∫
f(x, y)
G(y)

dxdy| = o(n−1p); (4.2)

E
∣∣∣S2 − p−2rκ2(1− 2−2r)−1

∫
v(r)2

∣∣∣ = o(p−2r); (4.3)

E(S3) = o(n−2r/(2r+1)); (4.4)

S4 = O(p−2r
q ) = o(p−2r). (4.5)
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Step 1. We verify (4.2). By using Lemma 6.5 it follows that

E
∣∣∣S1 − θn−1p

∫ ∫
f(x, y)
G(y)

dxdy
∣∣∣

≤ E
∣∣∣ p−1∑
j=0

(ãj − aj)2 − θn−1p

∫ ∫
f(x, y)
G(y)

dxdy
∣∣∣+

p−1∑
j=0

EA2
j + 2E

p−1∑
j=0

|ãj − aj | · |Aj |

:= S11 + S12 + S13. (4.6)

Note that Eãj = aj and

nE(ãj − aj)2 =
θ2

n
Var
( n∑
k=1

φj(Xk)
G(Yk)

)
= θ2Var

(φj(X1)
G(Y1)

)
+ 2θ2

n−1∑
l=1

(
1− l

n

)
Cov

(φj(X1)
G(Y1)

,
φj(X1+l)
G(Y1+l)

)
. (4.7)

According to (2.3) we have

p−1∑
j=0

θ2Var
(φj(X1)
G(Y1)

)
=

p−1∑
j=0

θ2
[ ∫ ∫ φ2

j (x)
G2(y)

F ∗(dx, dy)−
(∫ ∫ φj(x)

G(y)
F ∗(dx, dy)

)2]

=
p−1∑
j=0

[
θ

∫ ∫
φ2(u)
G(y)

f
(u+ j

p
, y
)
dudy −

(∫
p−1/2φ(u)v

(u+ j

p

)
du
)2]

. (4.8)

Now, by
∫
φ2 = 1 and the compactness of the support of φ, we get

p−1∑
j=0

(∫
p−1/2φ(u)v(

u+ j

p
)du
)2
≤ C

p−1∑
j=0

∫
φ2(u)p−1v2(

u+ j

p
)du→ C

∫
v2(x)dx.

Hence, from
∑p−1

j=0 p
−1f(u+j

p , y)→
∫
f(x, y)dx and (4.8), it follows

p−1∑
j=0

θ2Var
(φj(X1)
G(Y1)

)
= pθ

∫ ∫
f(x, y)
G(y)

dxdy + o(p). (4.9)

Note that, from (3.1), (2.3), (A1) and v(x) ≤ C2 we have∣∣∣Cov
(φj(X1)
G(Y1)

,
φj(X1+l)
G(Y1+l)

)∣∣∣
≤ G−2(aF )E|φj(X1)φj(X1+l)|+ E

∣∣∣φj(X1)
G(Y1)

∣∣∣E∣∣∣φj(X1+l)
G(Y1+l)

∣∣∣
= G−2(aF )

∫ ∫
|φj(x)φj(x′)|v∗l (x, x′)dxdx′ + θ2

(∫
|φj(x)|v(x)dx

)2

≤ C0G
−2(aF )p−1

∫ ∫
|φ(s)φ(t)|dsdt+ C2

2θ
2p−1

(∫
|φ(u)|du

)2

= O(p−1) for j = 0, 1, · · · , p− 1.
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On the other hand, since |φj(Xk)/G(Yk)| ≤ G−1(aF )p1/2‖φ‖∞ = O(p1/2), according to Lemma

6.1 we have

|Cov(φj(X1)/G(Y1), φj(X1+l)/G(Y1+l))| = O(pα(l)).

Note that p2r+1δ2 →∞ and pqδ2 = O(n−ε) imply p ≥ Cnε/(2r). Choosing Mn = p/ log log n, we

have

2θ2
∣∣∣ n−1∑
l=1

(
1− l

n

)
Cov

(φj(X1)
G(Y1)

,
φj(X1+l)
G(Y1+l)

)∣∣∣ ≤ C( ∑
l≤Mn

+
∑
l>Mn

)
min(p−1, pα(l)) = o(1). (4.10)

In the Appendix, it is proved that

Var
( p−1∑
j=0

(ãj − aj)2
)

= o(n−2p2). (4.11)

Then (4.7) and (4.9)-(4.11) yield that S11 = o(n−1p).

Following the line as for S11, it is easy to see that

S12 = O
( ln ln(n)

n

) p−1∑
j=0

E
[ θ
n

n∑
k=1

|φj(Xk)|
G(Yk)

]2

≤ O
( ln ln(n)

n

) p−1∑
j=0

{
E
[ θ
n

n∑
k=1

( |φj(Xk)|
G(Yk)

− E
( |φj(Xk)|
G(Yk)

))]2
+ θ
(
E
∣∣∣φj(X1)
G(Y1)

∣∣∣)2}
= O

( ln ln(n)
n

)
·O
( p
n

)
+O

( ln ln(n)
n

)
= o(n−1p).

As to S13, we have S13 ≤ 2
(∑p−1

j=0 E(ãj − aj)2
)1/2(∑p−1

j=0 EA
2
j

)1/2
= o(n−1p).

Step 2. We prove (4.3). Let ζ > 0, and define

S21 =
q−1∑
i=0

pi−1∑
j=0

a2
ijI(|aij | ≤ (1 + ζ)δ), S22 =

q−1∑
i=0

pi−1∑
j=0

a2
ijI(|aij | ≤ (1− ζ)δ),

∆ =
∑q−1

i=0

∑pi−1
j=0 a2

ijI(|âij − aij | > ζδ). Then S22 −∆ ≤ S2 ≤ S21 + ∆.

By using a Taylor expansion, we have

aij = p
−1/2
i

∫
ψ(u)v(

u+ j

pi
)du = p

−1/2
i

∫
ψ(u)

[ r−1∑
l=0

1
l!

(u/pi)lv(l)(j/pi)

+
1

(r − 1)!
(u/pi)r

∫ 1

0
(1− t)r−1v(r)((j + tu)/pi)dt

]
du

= p
−(r+1/2)
i

1
(r − 1)!

∫
urψ(u)

[ ∫ 1

0
(1− t)r−1v(r)((j + tu)/pi)dt

]
du

= κp
−(r+1/2)
i (gij + ηij), (4.12)

11



where gij = v(r)(j/pi) and sup0≤i≤q−1,0≤j≤pi−1 |ηij | → 0.

Note that supj |aij | ≤ Cp
−(r+1/2)
i ≤ Cp−(r+1/2) and pr+1/2δ →∞. Hence, for n large enough

we have

S21 = S22 =
q−1∑
i=0

pi−1∑
j=0

a2
ij =

q−1∑
i=0

pi−1∑
j=0

κ2p
−(2r+1)
i (gij + ηij)2

= κ2(1− 2−2r)−1p−2r

∫
v(r)2 + o(p−2r).

Therefore, to prove (4.3), it suffices to show that E∆ = o(S21).

According to Lemma 6.5 we have

E∆ ≤
q−1∑
i=0

pi−1∑
j=0

a2
ijP (|ãij − aij | > γ1ζδ) +

q−1∑
i=0

pi−1∑
j=0

a2
ijP (|Aij | > γ2ζδ), (4.13)

where γ1 and γ2 are positive constants such that γ1 + γ2 = 1.

In order to evaluate E∆, we first use Lemma 6.2 to bound P (|ãij − aij | > γ1ζδ). Set

ξijk = θ
G(Yk)ψij(Xk). Then Eξijk = aij and |ξijk − Eξijk| ≤ Cp

1/2
i := S,

E(ξijk − Eξijk)2 ≤ Eξ2
ijk ≤ C, |Cov(ξijs, ξijt)| = O(p−1

i ) for s 6= t.

Hence, by Lemma 6.3, taking m =∞, for N ∈ N, 0 < N ≤ n/2 we have

DN = max
1≤l≤2N

Var
( l∑
k=1

ξijk

)
≤ CN((p1/2

i )2/r(p−1
i )1−1/r + C) ≤ CN. (4.14)

Note that pqδ
2 = O(n−ε), δ ≥ C3(n−1 log n)1/2 and λ ≥ (2 − ε)/ε imply pλ+1

i δ2(λ−1) <

pλ+1
q δ2(λ−1) → 0. So, according to Lemma 6.2, taking N = [(δ2pi)−1/2], it follows that

P (|ãij − aij | > γ1ζδ) = P (|
n∑
k=1

(ξijk − Eξijk)| > nγ1ζδ)

≤ 4 exp
{
− n2γ2

1ζ
2δ2/16

nN−1DN + Cnγ1ζδSN

}
+

32S
nγ1ζδ

nα(N)

≤ 4 exp{−C5δ
2n}+ C(pλ+1

i δ2(λ−1))1/2 → 0. (4.15)

By using arguments similar to those behind (4.14), it follows that Var(θ
∑n

k=1 |ψij(Xk)|G−1(Yk)) ≤

Cn. Hence

EA2
ij = O

( ln ln(n)
n

)
E
( θ
n

n∑
k=1

|ψij(Xk)|
G(Yk)

)2

= O
( ln ln(n)

n

){
Var
( θ
n

n∑
k=1

|ψij(Xk)|
G(Yk)

)
+ (θE|ψij(X1)|G−1(Y1))2

}
= O

( ln ln(n)
n

){ 1
n

+
1
pi

}
= o
( 1
n

)
. (4.16)
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From (4.13), (4.15) and (4.16), and noticing nδ2 →∞, it yields that

E∆ ≤ o
( q−1∑
i=0

pi−1∑
j=0

a2
ij

)
+

q−1∑
i=0

pi−1∑
j=0

a2
ij

EA2
ij

γ2
2ζ

2δ2
= o(S21).

Step 3. We prove (4.4). Let γ3, γ4 denote positive numbers satisfying γ3 + γ4 = 1. Then,

from I(|âij | > δ) ≤ I(|aij | > γ3δ) + I(|âij − aij | > γ4δ), we have

E(S3) ≤ S31 + S32, (4.17)

where S31 =
∑q−1

i=0

∑pi−1
j=0 E{(âij − aij)2I(|aij | > γ3δ)}, and S32 =

∑q−1
i=0

∑pi−1
j=0 E{(âij −

aij)2I(|âij − aij | > γ4δ)}. According to Lemma 6.5, it follows that

S31 ≤ 2
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|aij | > γ3δ)}+ 2
q−1∑
i=0

pi−1∑
j=0

E{A2
ijI(|aij | > γ3δ)}. (4.18)

The proof of (4.14) shows that E(ãij − aij)2 ≤ C/n, and (4.12) implies supj |aij | ≤ Cp
−(r+1/2)
i .

Hence, from n1/2δ →∞, we find

q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|aij | > γ3δ)} = O(n−1)
q−1∑
i=0

piI(pi ≤ (C/γ3δ)2/(2r+1))

= O(n−1δ−2/(2r+1)) = o(n−2r/(2r+1)). (4.19)

Note that pqδ2 = O(n−ε) implies that q = O(ln(n)), and pq ln(n)/n → 0 by δ2 ≥ C2 ln(n)/n.

Then, by using (4.16) we have

q−1∑
i=0

pi−1∑
j=0

E{A2
ijI(|aij | > γ3δ)} = O

( ln ln(n)
n

) q−1∑
i=0

{pi
n

+ 1
}

= O
( ln ln(n)

n

){pq
n

+ q
}

= o(n−2r/(2r+1)). (4.20)

Equations (4.18)-(4.20) yield that S31 = o(n−2r/(2r+1)).

Let β1, β2 denote positive numbers satisfying β1 + β2 = 1. On applying Lemma 6.5, we have

S32 ≤ 2
q−1∑
i=0

pi−1∑
j=0

E{A2
ijI(|âij − aij | > γ4δ)}+ 2

q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|âij − aij | > γ4δ)}

≤ 2
q−1∑
i=0

pi−1∑
j=0

EA2
ij + 2

q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|ãij − aij | > β1γ4δ)}

+2
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|Aij | > β2γ4δ)}. (4.21)
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Note that

q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|Aij | > β2γ4δ)}

=
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|Aij | > β2γ4δ, |ãij − aij | > β1γ4δ)}

+
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|Aij | > β2γ4δ, |ãij − aij | ≤ β1γ4δ)}

≤
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|ãij − aij | > β1γ4δ)}+ C

q−1∑
i=0

pi−1∑
j=0

EA2
ij ,

which, together with (4.21) and the proof of (4.20), leads to

S32 ≤ 3
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|ãij − aij | > β1γ4δ)}+ C

q−1∑
i=0

pi−1∑
j=0

EA2
ij

≤ 3
q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|ãij − aij | > β1γ4δ)}+ o(n−2r/(2r+1)).

Therefore, it suffices to show that

q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|ãij − aij | > β1γ4δ)} = o(n−2r/(2r+1)). (4.22)

Let a denote a positive number such that a−1 + b−1 = 1. By using Lemma 6.7 and (4.15),

according to Hölder’s inequality, we have

q−1∑
i=0

pi−1∑
j=0

E{(ãij − aij)2I(|ãij − aij | > β1γ4δ)}

≤
q−1∑
i=0

pi−1∑
j=0

[
E|ãij − aij |2a

]1/a[
P (|ãij − aij | > β1γ4δ)

]1/b

≤ C
q−1∑
i=0

pi−1∑
j=0

1
n

{
exp{−C6δ

2n}+ (pλ+1
i δ2(λ−1))1/(2b)

}
≤ Cpq

n
exp{−C6δ

2n}+ Cn−1p(λ+1)/(2b)+1
q δ(λ−1)/b = o(n−2r/(2r+1))

by choosing δ ≥ C7(n−1 ln(n))1/2 with C7 such that C6C7 = 2r/(2r + 1), and by noticing

that pqδ2 = O(n−ε), δ ≥ C3(n−1 log n)1/2 and ε(λ + 1 + 2b) + 2b/(2r + 1) ≥ 2(b + 1) imply

n−1p
(λ+1)/(2b)+1
q δ(λ−1)/b = o(n−2r/(2r+1)).
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Step 4. We verify (4.5). From (4.12), it follows that

S4 =
∞∑
i=q

pi−1∑
j=0

κ2p
−(2r+1)
i (gij + ηij)2 ≤ 2κ2

∞∑
i=q

p
−(2r+1)
i

pi−1∑
j=0

g2
ij = O(p−2r

q ) = o(p−2r).

Now, we prove (iii). It is easy to see that

m̂(x)−m(x) =
ĥ(x)− h(x)

v̂(x)
+
h(x)
v(x)

· v(x)− v̂(x)
v̂(x)

.

Then∫
(m̂(x)−m(x))2dx ≤ 2

infx∈[0,1] v2(x)− supx∈[0,1] |v̂2(x)− v2(x)|

×
{∫

(ĥ(x)− h(x))2dx+ sup
x∈[0,1]

(h(x)
v(x)

)2
∫

(v̂(x)− v(x))2dx
}
.

From (3.1) and (A2), it suffices to show that

sup
x∈[0,1]

|v̂(x)− v(x)| = op(1), (4.23)∫
(ĥ(x)− h(x))2dx = Op(n−1p+ p−2r), (4.24)∫
(v̂(x)− v(x))2dx = Op(n−1p+ p−2r). (4.25)

Note that, (i) and (ii) imply, respectively, that

E

∫
(ĥ(x)− h(x))2dx ≤ C(n−1p+ p−2r), E

∫
(v̂(x)− v(x))2dx ≤ C(n−1p+ p−2r).

Therefore, by using the fact that |η| = Op(E|η|) for any random variable η, it yields (4.24) and

(4.25).

Next, we prove (4.23). Since φ and ψ are compactly supported,

sup
x∈[0,1]

|v̂(x)− v(x)| ≤ I1 + I2 + I3 + I4, (4.26)

where

I1 =
p−1∑
j=0

|âj − aj |‖φj‖∞, I2 =
q−1∑
i=0

pi−1∑
j=0

|aij |I(|âij | ≤ δ)‖ψij‖∞,

I3 =
q−1∑
i=0

pi−1∑
j=0

|âij − aij |I(|âij | > δ)‖ψij‖∞, I4 =
∞∑
i=q

pi−1∑
j=0

|aij |‖ψij‖∞.
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Note that ‖φj‖∞ = O(p1/2) and ‖ψij‖∞ = O(p1/2
i ). By Hölder’s inequality and (4.2), from

p2r+1 = O(n) and r > 1 it follows that

I1 = O(p)
( p−1∑
j=0

(âj − aj)2
)1/2

= p{Op(n−1p)}1/2 = op(1). (4.27)

Similarly, from pqδ
2 = O(n−ε) with (r + 1)/(2r + 1) ≤ ε < 2r/(2r + 1) and p2r+1δ2 → ∞ we

have

I2 ≤ C

q−1∑
i=0

p
1/2
i

pi−1∑
j=0

|aij |I(|âij | ≤ δ) ≤ C
{ q−1∑
i=0

pi ·
q−1∑
i=0

( pi−1∑
j=0

|aij |I(|âij | ≤ δ)
)2}1/2

≤ C
{
pq ·

q−1∑
i=0

pi−1∑
j=0

a2
ijI(|âij | ≤ δ)

pi−1∑
j=0

1
}1/2

= pq{Op(p−2r)}1/2 = op(1). (4.28)

I3 ≤ Cpq

{ q−1∑
i=0

pi−1∑
j=0

(âij − aij)2I(|âij | > δ)
}1/2

= pq{op(n−2r/(2r+1))}1/2 = op(1). (4.29)

From (4.12) we have

I4 ≤ 2κ
∞∑
i=q

pi−1∑
j=0

p−ri |gij | = 2κ
∞∑
i=q

p
−(r−1)
i

pi−1∑
j=0

p−1
i |gij | = O(p−(r−1)

q ) = o(1). (4.30)

Then, (4.23) follows from (4.26)-(4.30). �

Proof of Theorem 3.2. Similarly to the proof as in Theorem 3.1, we prove only (i), the proof of

(ii) is analogous, and (iii) can be proved by using (i) and (ii). By the orthogonality properties

of φ and ψ,
∫

(v̂ − v)2 = Γq(Z,Z, · · · ), where Z denotes the set of all integers (for instance,

Li = {0, 1, · · · , pi − 1}) and

Γq(L,L0,L1, · · · ) =
∑
j∈L

(âj − aj)2 +
q−1∑
i=0

∑
j∈Li

a2
ijI(|âij | ≤ δ)

+
q−1∑
i=0

∑
j∈Li

(âij − aij)2I(|âij | > δ) +
∞∑
i=q

∑
j∈Li

a2
ij

:= Γ1(L) + Γ2(L0,L1, · · · ) + Γ3(L0,L1, · · · ) + Γ4(L0,L1, · · · ).

When v is only piecewise continuous, let X denote the finite set of points where v(s) has discon-

tinuities for some 0 ≤ s ≤ r. Suppose suppφ ⊆ (−v, v), suppψ ⊆ (−v, v) and let

k = {k, k ∈ (py − v, py + v) for some y ∈ X}, ki = {k, k ∈ (piy − v, piy + v) for some y ∈ X}.
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Also let kc, kci denote their complements. Then, unless j ∈ ki, aij and âij are constructed

entirely from an integral over or an average of data values from an interval where v(r) exists

and is bounded and continuous. Also, unless j ∈ k, aj and âj are constructed solely from such

regions. Then we may write

Γq(L,L0,L1, · · · ) = Γ1(k) + Γ2(k0,k1, · · · ) + Γ3(k0,k1, · · · ) + Γ4(k0,k1, · · · )

+Γ1(kc) + Γ2(kc0,k
c
1, · · · ) + Γ3(kc0,k

c
1, · · · ) + Γ4(kc0,k

c
1, · · · ).

The proof of (4.7) shows E(ãj − aj)2 = O(n−1), the evaluation for S12 shows EA2
j =

O( ln ln(n)
n )(n−1 + p−1). Since φ and ψ have compactly supported, both k and ki have no more

than (2v + 1)(#X ) elements for each i. Then by Lemma 6.5 it follows that

EΓ1(k) ≤ 2
∑
j∈k

E(ãj − aj)2 + 2
∑
j∈k

EA2
j = O

( 1
n

)
+O

( ln ln(n)
n

)[ 1
n

+
1
p

]
= o
(
n−2r/(2r+1)

)
.

Note that

EΓ2(k0,k1, · · · ) ≤
q−1∑
i=0

∑
j∈ki

a2
ijI(|aij | ≤ (1 + ζ)δ) +

q−1∑
i=0

∑
j∈ki

a2
ijP (|âij − aij | > ζδ)

= O
(
qδ2
)

+
q−1∑
i=0

∑
j∈ki

p−1
i

{
P (|ãij − aij | > cδ) + P (|Aij | > cδ)

}
. (4.31)

From (2.3) and δ ≥ C3(n−1 log n)1/2 we have E|Aij |δ−1 ≤ C
√

ln ln(n)/(nδ2)·θE(|ψij(X1)|/G(Y1)) =

C((ln ln(n)/(nδ2pi))1/2) ≤ C((ln ln(n)/(p ln(n)))1/2) → 0, hence similarly to the proof as for

(4.15) one can verify that

P (|Aij | > cδ) ≤ P (|Aij − EAij | > cδ) ≤ 4 exp
{
− C5δ

2n
}

+ Cp
(λ+1)/2
i δλ−1.

Therefore, in view of p2r+1
q n−2r → ∞ and (A3), from (4.31) and n2r/(2r+1) · p(λ−1)/2

q δλ−1 ≤

Cn−[ε(λ−1)/2−2r/(2r+1)] → 0 since ε(λ− 1)/2− 2r/(2r + 1) > o by λ ≥ 1 + (2r + 1)/ε we have

EΓ2(k0,k1, · · · ) ≤ O
(
q(pqδ2) · p−1

q

)
+ C

q−1∑
i=0

p−1
i

(
exp

{
− C5δ

2n
}

+ p
(λ+1)/2
i δλ−1

)
≤ o

(
n−2r/(2r+1)

)
+ Cp−1 exp

{
− C5δ

2n
}

+ Cp(λ−1)/2
q δλ−1 = o

(
n−2r/(2r+1)

)
.

By Lemmas 6.5 and 6.7, from (4.16) it follows that

EΓ3(k0,k1, · · · ) ≤ 2
q−1∑
i=0

∑
j∈ki

{
E(ãij − aij)2 + EA2

ij

}
= O(q/n) = o

(
n−2r/(2r+1)

)
.
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Thus Γ1(k)+Γ2(k0,k1, · · · )+Γ3(k0,k1, · · · ) is negligible compared to the main terms of MISE. In

view of aij = O(p−1/2
i ) and p2r+1

q n−2r →∞ we have Γ4(k0,k1, · · · ) = O(p−1
q ) = o(n−2r/(2r+1)).

By tracing the whole proof of Theorem 3.1 carefully, Γq(kc,kc0,k
c
1, · · · ) has precisely the asymp-

totic properties claimed for
∫

(v̂ − v)2 in Theorem 3.1. �

5 Simulation Study

In order to analyze the finite sample properties of the proposed estimates we have conducted

a small simulation study. We have focused in the estimator for the regression function, which

is probably the most interesting case in applications. Following Cai and Kim (2003), it was

assumed that the observed covariables were clustered in m groups of K correlated observations

(m = 25, 50 and K = 3, 5). The joint survival function for L correlated values of the covariable,

(X1, . . . , XL), is given by

P (X1 > x1, . . . , XL > xL) =

{
L∑
i=1

Si(xi)−1/λ − (L− 1)

}−λ
where Si is the marginal survival function for Xi and λ > 0 is a parameter which controls the

degree of dependence: large values of λ correspond with a weak dependence within each cluster

whereas small ones indicate a strong dependence structure. Here we have chosen λ = 0.8 and

λ = 3. As in Cai and Kim (2003), the marginal distribution of Xi was the exponential with

mean one. Since we have assumed that m clusters of K dependent observation were observed,

the sample size of the observed sample was n = K × m. Since the clusters are statistically

independent, the α-mixing property is automatically satisfied if K remains bounded as m goes

to infinity

Given an observed value of a covariable, Xi = xi (i = 1, . . . , n), the variable Yi was generated

according to the model

Yi = m(xi) + εi,

where m(x) = x is the true regression function and {εi}ni=1 is a sequence of iid random variables

with zero-mean normal distribution. The values for the standard deviation of the random errors

εi were σ = 0.2 and σ = 1. The truncation time, T , was independently generated according

to a normal distribution with mean µ and standard deviation one. Note that, since the iid

truncation times are independent of everything else, the α-mixing property of the observed
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sample follows from that of the original sample.The parameter µ was chosen in order to ensure

that 1− θ = P (Y < T ) were, approximately, 10%, 30% and 60%. Table 1 shows the values of µ

for the different values of σ and truncation percentages.

10% 30% 60%

σ = 1 −1.1 0.1 1.3

σ = 0.2 −0.7 0.2 1.2

Table 1: Values of µ to get truncation rates of 10%, 30% and 60%

We have simulated B = 1000 random samples from the above mentioned models (48 in

total). For each sample we have computed the proposed estimator for the regression function,

m̂, for several values of the parameters. The parameter q was fixed at zero (so we used a linear

wavelet, for which the δ parameter plays no role). Then, in order to investigate the influence of

the p parameter on the performance of the estimator, we have chosen 80 equispaced values of p

between 0.05 and 4. Therefore, given a random sample, we have computed 80 estimates of m,

one for each value of p. The error criteria was the integrated square error (ISE),∫
(m̂(x)−m(x))2dx,

which was only computed between x = 0 and x = 2. This ensures that density of X, v, remains

large enough (see Condition A2). Table 2 reports, for each model, the median ISE along the

simulations for the wavelet based on the parameter p which minimizes this error criterion. Of

course, this optimal p is not available in practice, and a very interesting topic which is left for

future research is that of the development of some data-driven selection rule for the estimate’s

smoothing degree. The influence of p on the error is clearly seen from Figures 1 to 3, in which

the median ISE is averaged along a number of simulated models. In Figure 1, performance in

models with m=25, K=3 (n=75) is compared to that in models with m=50, K = 3 (n=150).

Comparison for the case K=5 (not shown) reports a similar result. From this Figure 1 we see

that the error decreases with an increasing sample size n. Figure 2 compares performance in

models under 10% of truncation to 60% of truncation; this figure suggests that the regression

wavelet estimator behaves worse in the second scenario. Finally, in Figure 3, the ISEs with

small and large variance of the error term ε are compared. As expected, the latter scenario

gives larger ISEs. Note the bath-tube shape of the curves in Figure 1 to 3, indicating the risk

of undersmoothing (small p) and oversmoothing (large p). As usual, the optimal value of p
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is a compromise between bias and variance. As a final remark, from Table 2 we see that the

estimate is relatively robust against dependence in the data. For instance, the lowest mean error

is achieved for the same value of p (0.6) both λ = 0.8 and λ = 3 and the minimum is also almost

the same (0.0962 and 0.0973, respectively). This robustness is in accordance to the provided

theory.

m K λ σ Tr. Err.

25 3 3.0 1.0 10 0.095

25 3 3.0 1.0 30 0.144

25 3 3.0 1.0 60 0.351

25 3 3.0 0.2 10 0.019

25 3 3.0 0.2 30 0.020

25 3 3.0 0.2 60 0.043

25 3 0.8 1.0 10 0.096

25 3 0.8 1.0 30 0.142

25 3 0.8 1.0 60 0.378

25 3 0.8 0.2 10 0.019

25 3 0.8 0.2 30 0.018

25 3 0.8 0.2 60 0.035

25 5 3.0 1.0 10 0.268

25 5 3.0 1.0 30 0.109

25 5 3.0 1.0 60 0.323

25 5 3.0 0.2 10 0.011

25 5 3.0 0.2 30 0.012

25 5 3.0 0.2 60 0.027

25 5 0.8 1.0 10 0.077

25 5 0.8 1.0 30 0.108

25 5 0.8 1.0 60 0.308

25 5 0.8 0.2 10 0.010

25 5 0.8 0.2 30 0.010

25 5 0.8 0.2 60 0.025

m K λ σ Tr. Err.

50 3 3.0 1.0 10 0.063

50 3 3.0 1.0 30 0.092

50 3 3.0 1.0 60 0.018

50 3 3.0 0.2 10 0.009

50 3 3.0 0.2 30 0.010

50 3 3.0 0.2 60 0.061

50 3 0.8 1.0 10 0.009

50 3 0.8 1.0 30 0.089

50 3 0.8 1.0 60 0.252

50 3 0.8 0.2 10 0.009

50 3 0.8 0.2 30 0.009

50 3 0.8 0.2 60 0.017

50 5 3.0 1.0 10 0.046

50 5 3.0 1.0 30 0.068

50 5 3.0 1.0 60 0.204

50 5 3.0 0.2 10 0.006

50 5 3.0 0.2 30 0.006

50 5 3.0 0.2 60 0.013

50 5 0.8 1.0 10 0.046

50 5 0.8 1.0 30 0.067

50 5 0.8 1.0 60 0.009

50 5 0.8 0.2 10 0.005

50 5 0.8 0.2 30 0.005

50 5 0.8 0.2 60 0.012

Table 2: Error for the best smoothing parameter
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Figure 1: Mean error for sample sizes n = 75 (continuous line) and n = 150 (dotted line)
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Figure 2: Mean error for sample truncation percentages 10% (continuous line) and 60% (dotted line)
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[21] Iglesias-Pérez, M. C. (2003). Strong representation of a conditional quantile function esti-

mator with truncated and censored data. Statist. Probab. Lett. 65, 79-91.

[22] Kang, S. S. and Koehler, K. J. (1997). Modifcation of the greenwood formula for correlated

failure times. Biometrics 53, 885-899.

[23] Kerkyacharian, G. and Picard, D. (1992). Density estimation in Besov spaces. Statist.

Probab. Lett. 13, 15-24.

[24] Kerkyacharian, G. and Picard, D. (1993). Density estimation by kernel and wavelets meth-

ods: optimality of Besov spaces. Statist. Probab. Lett. 18(4), 327-336.

[25] Li, L. (2003). Non-linear wavelet-based density estimators under random censorship. J.

Statist. Plann. Inference 117 35-58.

[26] Li, L., MacGibbon, B. and Valenta, C. (2008). On the optimality of wavelet-based non-

parametric regression with censored data. J. Appl. Probab. Statist. 3, 243-261.

[27] Li, L. and Xiao, Y. (2006). Wavelet-based estimators of mean regression function with long

memory data. Appl. Math. Mech. (English Ed.) 27(7), 901-910.

[28] Li, L. and Xiao, Y. (2007). Mean integrated squared error of non-linear wavelet-based

estimators with long memory data. Ann. Inst. Statist. Math. 59, 299-324.

[29] Liang, H. Y., Mammitzsch, V. and Steinebach, J. (2005). Nonlinear wavelet density and

hazard rate estimation for censored data under dependent observations. Statist. Decisions.

23, 161-180.

[30] Liang, H. Y., Li, D. L. and Qi, Y. C. (2009). Strong convergence in nonparametric regression

with truncated dependent data. J. Multivariate Anal. 100, 162-174.

[31] Liebscher, E. (1996). Strong convergence of sums of α-mixing random variables with appli-

cations to density estimation. Stochastic Processes Appl., 65(1), 69-80.

[32] Liebscher, E. (2001). Estimation of the density and the regression function under mixing

conditions. Statist. Decisions, 19(1), 9-26.

24
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6 Appendix

In this section, we give some preliminary Lemmas, which have been used in Section 4. Let

{Zi, i ≥ 1} be a sequence of α-mixing real random variables with the mixing coefficients {α(k)}.

Lemma 6.1 (Hall and Heyde (1980), Corllary A.1) Suppose that X and Y are random

variables such that |X| < C1, |Y | < C2. Then

|EXY − EXEY | ≤ 4C1C2

{
sup

A∈σ(X),B∈σ(Y )
|P (A ∩B)− P (A)P (B)|

}
.

25



Lemma 6.2 (Liebscher (2001), Proposition 5.1) Assume that EZi = 0 and |Zi| ≤ S <

∞ a.s. (i = 1, 2, · · · , n). Set DN = max1≤j≤2N Var(
∑j

i=1 Zi). Then, for n,N ∈ N, 0 < N ≤ n/2,

ε > 0,

P
(∣∣∣ n∑

i=1

Zi

∣∣∣ > ε
)
≤ 4 exp

{
− ε2

16

(
nN−1DN +

1
3
εSN

)−1}
+ 32

S

ε
nα(N).

Lemma 6.3 (Liebscher (1996), Lemma 2.3) Assume α(k) ≤ C1k
−r, for some r > 1, C1 >

0. Let sup1≤i,j≤n,i 6=j |Cov(Zi, Zj)| := R∗(n) < ∞ be satisfied. Moreover, let Rm(n) < ∞ for

some m, 2r/(r − 1) < m ≤ ∞, where Rm(n) = sup1≤i≤n(E|Zi|m)1/m, for 1 ≤ m < ∞, and

R∞(n) = sup1≤i≤n ess sup w∈Ω|Zi|. Then

Var
( n∑
i=1

Zi

)
≤ n

{
C2(r,m)(Rm(n))2m/(r(m−2))(R∗(n))1−m/(r(m−2)) +R2

2(n)
}

holds with C2(r,m) := 20r−40r/m
r−1−2r/mC

1/r
1 .

Lemma 6.4 (Liang et al. (2009)) Suppose that α(k) = O(k−r) for some r > 3. Then

sup
y
|Gn(y)−G(y)| = O((ln ln(n)/n)1/2) a.s., |θn − θ| = O((ln ln(n)/n)1/2) a.s.

Lemma 6.5 Let âj, âij , b̂j, b̂ij be as defined in Section 2. Set

ãj =
θ

n

n∑
k=1

1
G(Yk)

φj(Xk), ãij =
θ

n

n∑
k=1

1
G(Yk)

ψij(Xk),

b̂j =
θ

n

n∑
k=1

Yk
G(Yk)

φj(Xk), b̂ij =
θ

n

n∑
k=1

Yk
G(Yk)

ψij(Xk).

Then, under the assumption α(n) = O(n−r) for some r > 3, we have

âj = ãj +Aj , âij = ãij +Aij , b̂j = b̃j +Bj , b̂ij = b̃ij +Bij ,

where

Aj = O
(( ln ln(n)

n

)1/2)
· θ
n

n∑
k=1

|φj(Xk)|
G(Yk)

a.s.,

Aij = O
(( ln ln(n)

n

)1/2)
· θ
n

n∑
k=1

|ψij(Xk)|
G(Yk)

a.s.,

Bj = O
(( ln ln(n)

n

)1/2)
· θ
n

n∑
k=1

|Ykφj(Xk)|
G(Yk)

a.s.,

Bij = O
(( ln ln(n)

n

)1/2)
· θ
n

n∑
k=1

|Ykψij(Xk)|
G(Yk)

a.s..
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Proof. We observe that

âj =
θ

n

n∑
k=1

1
G(Yk)

φj(Xk) +
[θn − θ

n

n∑
k=1

1
Gn(Yk)

φj(Xk)

+
θ

n

n∑
k=1

( 1
Gn(Yk)

− 1
G(Yk)

)
φj(Xk)

]
:= ãj +Aj .

According to (3.1) and Lemma 6.4 we have

|Aj | ≤
|θn − θ|
nGn(aF )

n∑
k=1

|φj(Xk)|+
θ supy |Gn(y)−G(y)|

nGn(aF )

n∑
k=1

|φj(Xk)|
G(Yk)

≤ |θn − θ|
n[G(aF )− supy |Gn(y)−G(y)|]

n∑
k=1

|φj(Xk)|

+
θ supy |Gn(y)−G(y)|

n[G(aF )− supy |Gn(y)−G(y)|]

n∑
k=1

|φj(Xk)|
G(Yk)

= O
(( ln ln(n)

n

)1/2)
· θ
n

n∑
k=1

|φj(Xk)|
G(Yk)

a.s..

The other quantities can be analyzed in the same manner. �

Lemma 6.6 (Bradley (1983), Theorem 3) Let η and ξ be real-valued random variables.

Suppose U is a uniform-[0, 1] random variable, independent of (η, ξ). Then there exists a real-

valued random variable ξ∗, measurable w.r.t. (η, ξ, U), such that

(1) ξ∗ is independent of η,

(2) the probability distributions of ξ∗ and ξ are identical, and

(3) P (|ξ∗ − ξ| ≥ ε) ≤ 18(‖ξ‖r/ε)r/(2r+1){supA∈σ(ξ),B∈σ(η) |P ((A ∩ B) − P (A)P (B)|}2r/(2r+1),

where 0 < ε ≤ ‖ξ‖r, when ‖ξ‖r > 0, and ε > 0, when ‖ξ‖r = 0 and ‖ξ‖∞ = ess sup |ξ|.

Remark 6.1 Bradley (1983), Theorem 3, considers only the case ‖ξ‖r > 0. Actually, if ‖ξ‖r =

0, then ξ = 0 a.s.; hence, on choosing ξ∗ = ξ = 0 a.s., then, for any ε > 0, (1), (2) and (3) in

Lemma 6.6 are still true.

Lemma 6.7 Let τ > 2. Under the assumptions of Theorem 3.1, if λ ≥ (τ − 1)(2τ + 1)(2 −

ε)/(2ε(τ − 2)), then E|ãij − aij |τ = O(n−τ/2), E|b̃ij − bij |τ = O(n−τ/2).
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Proof. Following the lines of Lemma 4.5 in Liang et al. (2005), one can verify Lemma 6.7. For

the sake of completeness, here we give the proof of the second equation, the proof of the first

equation is analogous. Choosing r(n) = [(n/pq)(τ−2)/(2(τ−1))], and positive integers k(n) and

γ(n) such that n = r(n)k(n) + γ(n), with 0 ≤ γ(n) < r(n). Set Wk = 1
n( θYkψij(Xk)

G(Yk) − bij). Then

b̃ij − bij =
k(n)∑
l=1

lr(n)∑
j=(l−1)r(n)+1

Wj +
n∑

j=r(n)k(n)+1

Wj .

The contribution of the remainder term
∑n

i=r(n)k(n)+1Wi is negligible (and is subsequently

ignored) since it consists of at most r(n) terms. So, without loss of generality, we assume

γ(n) = 0, and further k(n) = 2s(n). Then

b̃ij − bij =
2s(n)∑
l=1

lr(n)∑
j=(l−1)r(n)+1

Wj :=
2s(n)∑
l=1

ξn(l)

=
s(n)∑
l=1

ξn(2l) +
s(n)∑
l=1

ξn(2l − 1) := S(n) + T (n), (6.1)

where ξn(l) =
∑lr(n)

j=(l−1)r(n)+1Wj . Hence E|β̃ij − bij |τ ≤ C{E|S(n)|τ + E|T (n)|τ}. Next, we

evaluate only E|T (n)|τ , since the evaluation of E|S(n)|τ is similar. In view of Lemma 6.6, there

exist i.i.d. random variables ξ∗n(2l − 1), l = 1, 2, . . . , s(n) such that ξ∗n(2l − 1) has the same

distribution as ξn(2l − 1) for each l, and satisfies

P (|ξ∗n(2l − 1)− ξn(2l − 1)| ≥ εl) ≤ 18(
‖ξn(2l − 1)‖∞

εl
)1/2α(r(n)), (6.2)

where 0 < εl ≤ ‖ξn(2l − 1)‖∞, if ‖ξn(2l − 1)‖∞ > 0, and εl > 0, if ‖ξn(2l − 1)‖∞ = 0. Then,

E|T (n)|τ ≤ C{E|
s(n)∑
l=1

ξ∗n(2l − 1)|τ + E|
s(n)∑
l=1

(ξ∗n(2l − 1)− ξn(2l − 1))|τ}

:= C{T1(n) + T2(n)}.

Let us take Mn > 0 such that s(n)Mn � n−1/2, where an � bn means 0 < lim inf an/bn ≤

lim sup an/bn < ∞, and assume ‖ξn(2l − 1)‖∞ ≥ Mn, for l = 1, 2, . . . , s(n). Otherwise, by

rearranging the terms appropriately, we may assume, without loss of generality, that ‖ξn(2l −

1)‖∞ ≥ Mn, for l = 1, 2, . . . , s1(n), and ‖ξn(2l − 1)‖∞ < Mn, for l = s1(n) + 1, . . . , s(n), where

s1(n) is a positive integer with s1(n) ≤ s(n), in this case we have

T2(n) ≤ C
{

(Mns(n))τ + E
( s1(n)∑

l=1

|ξ∗n(2l − 1)− ξn(2l − 1)|
)τ}

.
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Therefore,

T2(n) ≤ C
{

(Mns(n))τ + E
( s(n)∑

=1

|ξ∗n(2l − 1)− ξn(2l − 1)|I(|ξ∗n(2l − 1)− ξn(2l − 1))| ≥Mn)
)τ}

,

where ‖ξn(2l − 1)‖∞ ≥Mn. Observe that

|ξ∗n(2l − 1)− ξn(2l − 1)| ≤ 2r(n)
(θbF p1/2

i ‖ψ‖∞
G(aF )

+ |bij |
) 1
n
≤ C

n
r(n)p1/2

q .

Note that pqδ2 = O(n−ε), δ ≥ C3(n−1 log n)1/2 and λ ≥ (τ − 1)(2τ + 1)(2 − ε)/(2ε(τ − 2))

imply n
−(

λ(τ−2)
2(τ−1)

− 1
4

)
p
λ(τ−2)
2(τ−1)

+ τ
2

+ 1
4

q = o(n−τ/2). Then, according to (6.2) and Mns(n) = O(n−1/2),

it follows that

T2(n) ≤ C
{( 1

n
r(n)p1/2

q

)τ
(s(n))τ−1

s(n)∑
l=1

P (|ξ∗n(2l − 1)− ξn(2l − 1))| ≥Mn)
}

+O(n−τ/2)

≤ C
( 1
n
r(n)p1/2

q

)τ
(s(n))τ

(r(n)p1/2
q

nMn

)1/2
(r(n))−λ +O(n−τ/2)

≤ Cn
−(

λ(τ−2)
2(τ−1)

− 1
4

)
p
λ(τ−2)
2(τ−1)

+ τ
2

+ 1
4

q +O(n−τ/2) = O(n−τ/2).

Next, we estimate T1(n). Applying the Rosenthal inequality for sums of independent random

variables (cf. Petrov (1995), Theorem 2.9, page 59), we get

T1(n) ≤ C
{ s(n)∑
l=1

E|ξ∗n(2l − 1)|τ +
( s(n)∑
l=1

E(ξ∗n(2l − 1))2
)τ/2
}

≤ C{s(n)E|ξn(1)|τ + [s(n)E(ξn(1))2]τ/2
}
. (6.3)

From (3.1) we have

E|ξn(1)|τ = E
∣∣∣ r(n)∑
k=1

Wk

∣∣∣τ ≤ (r(n))τE|W1|τ ≤ (r(n))τ
( θbF
nG(aF )

)τ
E|ψij(X1)|τ

≤ C(r(n))τn−τ · pτ/2−1
i

∫
|ψ(u)|τv(

u+ j

pi
)du

≤ C(r(n))τn−τpτ/2−1
q .

Then

s(n)E|ξn(1)|τ = O(n−τ/2). (6.4)

As to E(ξn(1))2, by using Lemma 6.3, it follows that

E(ξn(1))2 = E
∣∣∣ r(n)∑
k=1

Wk

∣∣∣2 ≤ r(n){C(R∞(r(n))2/λ(R∗(r(n)))1−1/λ +R2
2(r(n))},
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where

R∞(r(n)) := sup
1≤k≤r(n)

esssupw∈Ω|Wk| ≤ C
(θbF p1/2

i ‖ψ‖∞
G(aF )

+ |bij |
) 1
n

= O(p1/2
q /n);

R2
2(r(n)) := E|W1|2 ≤

C

n2

∫
|ψ(u)|2v(

u+ j

pi
)du = O(n−2);

R∗(r(n)) := sup
1≤s,t≤r(n),s 6=t

|Cov(Ws,Wt)| ≤
C

n2pq
.

Therefore, E(ξn(1))2 ≤ Cr(n)n−2, and s(n)E(ξn(1))2 ≤ Cs(n)r(n)n−2 = O(n−1), which,

together with (6.3) and (6.4), yields T1(n) = O(n−τ/2). �

Proof of (4.11). Assume that suppφ ⊆ (−L,L). Set Vjk = θφj(Xk)
G(Yk) − aj . Then EVjk = 0,

‖Vjk‖∞ = O(p1/2), E|Vjk| = O(p−
1
2 ), and

n2
p−1∑
j=0

(ãj − aj)2 =
n∑
k=1

p−1∑
j=0

V 2
jk +

∑
1≤k1,k2≤n,k1 6=k2

p−1∑
j=0

Vjk1Vjk2 .

Hence

Var
{
n2

p−1∑
j=0

(ãj − aj)2
}
≤ C

{
Var
( n∑
k=1

p−1∑
j=0

V 2
jk

)
+ E

( ∑
k1 6=k2

p−1∑
j=0

Vjk1Vjk2

)2}
. (6.5)

It is easy to see that

n−1Var
( n∑
k=1

p−1∑
j=0

V 2
jk

)
= n−1E

{ n∑
k=1

p−1∑
j=0

(V 2
jk − EV 2

jk)
}2

= E
{ p−1∑
j=0

V 2
j1 − E

( p−1∑
j=0

V 2
j1

)}2
+ 2

n−1∑
l=1

(1− l

n
)Cov

( p−1∑
j=0

V 2
j1,

p−1∑
j=0

V 2
j,1+l

)
.

Since φ has compact support and it is a bounded function,

1
2

p−1∑
j=0

V 2
jk ≤

p−1∑
j=0

θ2φ2
j (X1)

G2(Y1)
+

p−1∑
j=0

a2
j

≤ θ2p

G2(aF )

p−1∑
j=0

φ2(pX1 − j) +
p−1∑
j=0

1
p

(∫
φ(u)v(

u+ j

p
)du
)2

= O(p).

Hence, by Lemma 6.1 we have

n−1∑
l=1

∣∣∣Cov
( p−1∑
j=0

V 2
j1,

p−1∑
j=0

V 2
j,1+l

)∣∣∣ = O
(
p2

n−1∑
l=1

α(l)
)

= O(p2).
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This yields Var(
∑n

k=1

∑p−1
j=0 V

2
jk) = O(np2) = o(n2p2). Therefore, from (6.5), it suffices to show

that

E
( ∑
k1 6=k2

p−1∑
j=0

Vjk1Vjk2

)2
= E

( ∑
k11 6=k12

∑
k21 6=k22

p−1∑
j1=0

p−1∑
j2=0

Vj1k11Vj1k12Vj2k21Vj2k22

)
= o(n2p2). (6.6)

In order to verify (6.6), we consider the sums above by several cases of the indices.

Case 1. Suppose the indices satisfy k11 = k21 = k1 and k12 = k22 = k2. First, when

|j1 − j2| ≤ 4L,

E
( ∑
k1 6=k2

p−1∑
j1=0

p−1∑
j2=0

Vj1k1Vj1k2Vj2k1Vj2k2

)
≤ Cpn2

p−1∑
j1=0

∑
j2:|j1−j2|≤4L

E|Vj11Vj12|

≤ Cpn2L

p−1∑
j1=0

E
∣∣∣(θp1/2φ(pX1 − j1)

G(Y1)
− aj1

)(θp1/2φ(pX2 − j1)
G(Y2)

− aj1
)∣∣∣

≤ Cpn2L

p−1∑
j1=0

{ θ2p

G2(aF )
E|φ(pX1 − j1)φ(pX2 − j1)|+ a2

j1

}

≤ Cpn2L

p−1∑
j1=0

{ θ2

G2(aF )

∫
1
p
|φ(u)|v(

u+ j1
p

)
du+ p−1

}
= O(n2p). (6.7)

When |j1− j2| > 4L, since φ is supported on (−L,L), at least one among φj1(Xk1) and φj2(Xk1)

is zero, the same being true for φj1(Zk2) and φj2(Zk2). Here, we will assume φj1(Xk1) =

0, φj1(Zk2) = 0, the other cases are investigated similarly. In this case, similarly to the ar-

guments as in (6.7) we have

E
( ∑
k1 6=k2

p−1∑
j1=0

p−1∑
j2=0

Vj1k1Vj1k2Vj2k1Vj2k2

)
≤
∑
k1 6=k2

p−1∑
j1=0

a2
j1

p−1∑
j2=0

E
∣∣∣Vj2k1Vj2k2∣∣∣ = O(n2).

Therefore, (6.6) holds.

Case 2. Suppose the indices satisfy k11 = k21 and k11 < k12 < k22. Then

E
( ∑

1≤k11<k12<k22≤n

p−1∑
j1=0

p−1∑
j2=0

Vj1k11Vj1k12Vj2k11Vj2k22

)

= E
( n−2∑
l1=1

n−1∑
l2=l1+1

n∑
l3=l2+1

p−1∑
j1=0

p−1∑
j2=0

Vj1l1Vj1l2Vj2l1Vj2l3

)

=
n−2∑
l1=1

n−l1−1∑
l2=1

[n− (l1 + l2)]
p−1∑
j1=0

p−1∑
j2=0

E
(
Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2)

)

≤ n
n−2∑
l1=1

n−l1−1∑
l2=1

p−1∑
j1=0

p−1∑
j2=0

∣∣∣E(Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2)

)∣∣∣. (6.8)
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Take Qn = δ−2/(2r+1). Introduce D1 = {(l1, l2) : l1 ≤ Qn, l2 ≤ Qn, 1 < l1 + l2 < n},

D2 = {(l1, l2) : l1 ≤ Qn, l2 > Qn, 1 < l1 + l2 < n}, D3 = {(l1, l2) : l1 > Qn, 1 < l1 + l2 < n}.

Then, according to Lemma 6.1, from EVj2(1+l1+l2) = 0 and |Vjk| ≤ Cp1/2, it follows that

n−2∑
l1=1

n−l1−1∑
l2=1

∣∣∣E(Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2)

)∣∣∣
≤

( ∑
(l1,l2)∈D1

+
∑

(l1,l2)∈D2

+
∑

(l1,l2)∈D3

)∣∣∣E(Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2)

)∣∣∣
≤

∑
(l1,l2)∈D1

∣∣∣E(Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2)

)∣∣∣
+Cp2

∑
(l1,l2)∈D2

α(l2) +
∑

(l1,l2)∈D2

∣∣∣E(Vj11Vj1(1+l1)Vj21

)
EVj2(1+l1+l2)

∣∣∣
+Cp2

∑
(l1,l2)∈D3

α(l1) +
∑

(l1,l2)∈D3

∣∣∣E(Vj11Vj21

)
E
(
Vj1(1+l1)Vj2(1+l1+l2)

)∣∣∣
≤

∑
(l1,l2)∈D1

∣∣∣E(Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2)

)∣∣∣+ Cnp2Q−(λ−1)
n

+C
∑

(l1,l2)∈D3

∣∣∣E(Vj1(1+l1)Vj2(1+l1+l2)

)∣∣∣. (6.9)

Note that
∑

(l1,l2)∈D3
|E(Vj1(1+l1)Vj2(1+l1+l2))| = o(n) from (4.10), |E(Vj11Vj1(1+l1)Vj21Vj2(1+l1+l2))| ≤

CpE|Vj11Vj1(1+l1)| = O(1), and that λ ≥ 3 +4r, pqδ2 = O(n−ε) and δ ≥ C3(n−1 log n)1/2 implies

Q2
n/n = O(n−(2r−1)/(2r+1)(ln(n))−2/(2r+1))→ 0 and

p2Q−(λ−1)
n = O(p−[λ−(3+4r)]/(2r+1)2−q(λ−1)/(2r+1)n−ε(λ−1)/(2r+1))→ 0.

So, from (6.8) and (6.9) we find

E
( ∑

1≤k11<k12<k22≤n

p−1∑
j1=0

p−1∑
j2=0

Vj1k11Vj1k12Vj2k11Vj2k22

)
≤ Cnp2Q2

n + Cn2p4Q−(λ−1)
n + o(n2p2) = o(n2p2).
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Case 3. Suppose the indices satisfy k11 < k12 < k21 < k22. By the stationarity of Xk we

have

E
( ∑

1≤k11<k12<k21<k22≤n

p−1∑
j1=0

p−1∑
j2=0

Vj1k11Vj1k12Vj2k21Vj2k22

)

=
n−3∑
l1=1

n−l1−2∑
l2=1

n−l1−l2−1∑
l3=1

n−(l1+l2+l3)∑
l4=1

p−1∑
j1=0

p−1∑
j2=0

E
(
Vj11Vj1(1+l2)Vj2(1+l2+l3)Vj2(1+l2+l3+l4)

)

=
n−3∑
l1=1

n−l1−2∑
l2=1

n−l1−l2−1∑
l3=1

[n− (l1 + l2 + l3)]
p−1∑
j1=0

p−1∑
j2=0

E
(
Vj11Vj1(1+l1)Vj2(1+l1+l2)Vj2(1+l1+l2+l3)

)
.

Let E1 = {(l1, l2, l3) : l1 ≤ Qn, l2 ≤ Qn, l3 ≤ Qn, 1 < l1 + l2 + l3 < n},

E2 = {(l1, l2, l3) : l1 ≤ Qn, l2 ≤ Qn, l3 > Qn, 1 < l1 + l2 + l3 < n},

E3 = {(l1, l2, l3) : l1 ≤ Qn, l2 > Qn, 1 < l1 + l2 + l3 < n},

E4 = {(l1, l2, l3) : l1 > Qn, 1 < l1 + l2 + l3 < n}.

Note that |E(Vj11Vj1(1+l1))| = O(p−1) and (4.10) imply that∑
(l1,l2,l3)∈E3

∣∣∣E(Vj11Vj1(1+l1)

)
E
(
Vj2(1+l1+l2)Vj2(1+l1+l2+l3)

)∣∣∣ = o(nQnp−1).

δ ≥ C3(n−1 log n)1/2 implies n−1Q3
n ≤ Cn−2(r−1)(ln(n))−3/(2r+1) → 0; λ ≥ max{1 + (2r +

1)/ε, 3 + 4r} and pqδ
2 = O(n−ε) imply

np2/Qλ−1
n ≤ Cn−[ελ−(2r+1+ε)]/(2r+1)2−q(λ−1)/(2r+1)p−[λ−(4r+3)]/(2r+1) → 0.

Hence, from p2r+1δ2 →∞, similarly to the arguments as in Case 2, it follows that

E
( ∑

1≤k11<k12<k21<k22≤n

p−1∑
j1=0

p−1∑
j2=0

Vj1k11Vj1k12Vj2k21Vj2k22

)
≤ Cnp2Q3

n + Cn3p4Q−(λ−1)
n + o(n2pQn) = o(n2p2).
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