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Preface

The International Seminar on Nonparametric Inference – ISNI2008 is held in the Faculty
of Economics and Business of the University of Vigo (Galicia, Spain) on 5–7 November,
2008. The meeting was promoted by the three Galician research groups in nonparame-
tric statistics (Vigo, Santiago de Compostela, and A Coruña), as well as by the close
collaborators in the Scientific Committee. The main goal of ISNI2008 is to facilitate the
exchange of research ideas in the field of nonparametric statitics, and the establishment
of new fruitful scientific collaborations.

More than one hundred researchers participate in the seminar. With the program
based on seventeen plenary Invited Talks given by leading researchers in their respective
areas, ISNI2008 also allows for the presentation of contributed papers. More than thirty
contributions were submitted, and six of them were selected by the Scientific Commitee
according to their relevance for oral presentation in plenary sessions. Important topics
as Functional Data Analysis, Statistical Learning, Survival Analysis, Finance, Econome-
trics, Extremes, Semiparametric Modelling, Goodness-of-fit Testing, Time Series, Spatial
Statistics or Resampling are covered. The Journal of Nonparametric Statistics will de-
dicate a special issue to papers inspired by the conference.

The research group in Statistical Inference, Decision and Operations Research of the
University of Vigo is responsible for the local organization. Main funding came from
the IAP Attraction Pole, the Spanish Ministry of Science and Innovation, the Branch
of Education and Universities of the Xunta de Galicia, the University of Vigo itself,
and the local Administrations. Other institutions, as the Institute of Mathematical
Statistics, the Section on Nonparametric Statistics of the ASA, the Bernoulli Society, or
the Spanish and Galician Societies for Statistics and Operations Research, support the
meeting scientifically and help with its dissemination.
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• Gábor Lugosi
Pompeu Fabra University of Barcelona, Spain

• Geert Molenberghs
Hasselt University, Belgium

• Jean Opsomer
Colorado State University, USA

• Stefan Sperlich
University of Gottingen, Germany

• Winfried Stute
University of Giessen, Germany

• Jacobo de Uña-Álvarez
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Álvarez, M.J. Rosales-Moreno, M.J. Del-Moral-Ávila 144
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Wednesday, November 5

09:00 Registration

09:30 Opening ceremony

10:00 Invited talk 1 – P. Vieu

Functional Data Analysis: nonparametric estimation and structural re-
gression tests

10:50 Invited talk 2 – H.-G. Müller

Functional Additive Modeling

11:40 Coffe-break

12:10 Invited talk 3 – J.C. Pardo-Fernández

New perspectives about error distribution based tests in nonparametric re-
gression

13:00 Invited talk 4 – H. Dette

Nonparametric analysis of covariance using quantile curves

13:50 Lunch break

15:20 Poster session for contributed papers1

16:00 Invited talk 5 – N. Neumeyer

Testing for monotonicity of nonparametric regression functions

16:50 Coffee-break

17:20 Invited talk 6 – S. Sperlich

Inference problems with resampling

1posters will be available along the 3 days
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Thursday, November 6

09:30 Invited talk 7 – G. Molenberghs

Every missing not at random model for incomplete data has got a missing
at random counterpart with equal fit

10:20 Invited talk 8 – W. Stute

Multivariate Kaplan-Meier Estimator

11:10 Coffee-break

11:40 Invited talk 9 – G. Claeskens

Goodness-of-fit tests in mixed models

12:30 Invited talk 10 – P. Hall

Nonlinear methods for variable selection

13:20 Lunch break

14:50 Oral session for selected contributed papers 1

14:50 J. Mora, A. Pérez-Alonso (presenting author): Specification tests for the
distribution of errors in nonparametric regression: a martingale approach

15:10 J.C. Escanciano (presenting author), D. Jacho-Chávez:
√
n-uniformly

consistent density estimation in nonparametric regression models

15:30 R. Mukherjee (presenting author), M. Kosorok, J. Fine: Efficient es-
timation for the Accelerated Failure Time Model for forward recurrence
times

15:50 Invited talk 11 – A. Davison

Geostatistics of extremes



ISNI2008 International Seminar on
Nonparametric Inference

5

Friday, November 7

09:30 Invited talk 12 – G. Lugosi

Randomized sequential prediction: performance and algorithms

10:20 Invited talk 13 – A. Antoniadis

Wavelet methods in statistics: some recent developments and their appli-
cations

11:10 Coffee-break

11:40 Invited talk 14 – I. Van Keilegom

Empirical likelihood for non-smooth criterion functions

12:30 Invited talk 15 – J. Swanepoel

A general uniform in bandwidth consistency result with applications

13:20 Lunch break

14:50 Oral session for selected contributed papers 2

14:50 J. Dony (presenting author): Uniform in bandwidth consistency of the
kernel–based Hill estimator

15:10 G. Boente (presenting author), R. Cao, W. González-Manteiga, D. Ro-
driguez: Robust inference in generalized partially linear models

15:30 J.A. Vilar Fernández (presenting author), A.M. Alonso, J.M. Vilar
Fernández: Time series clustering based on nonparametric forecast

15:50 Invited talk 16 – J. Opsomer

Shape-restricted regression in the presence of correlated errors

16:40 Coffee-break

17:10 Invited talk 17 – L. Duembgen

Least squares and shrinkage estimation under bimonotonicity constraints

18:00 Closing ceremony
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Invited talk 1

Functional Data Analysis:
nonparametric estimation and
structural regression tests

Philippe Vieu
Institut de Mathématiques, Equipe de Statistique et Probabilités
Univ. Paul Sabatier, Toulouse, France

Laurent Delsol and Frédéric Ferraty
Institut de Mathématiques, Toulouse, France

Abstract. This contribution proposes to discuss some recent advances ex-
isting in the area of functional data analyis when nonparametric models and
methods are used. It will be centered around regression problems, and both
estimation and testing questions will be discussed.

Statistics for Functional Data is a recent field of researches that was popularized by
the monographies [5] and [6]. Various statistical questions have been studied with func-
tional data, but the previous literature (see references in [1], [5] and [6]) was concentrated
around parametric models and methods. Since a few years nonparametric models have
been developed for analyzing functional variables, and the monography [3] presents a
wide scope of the literature in this field (including theoretical and applied issues).

In a first attempt, this talk will quickly recalls the basic ideas (extracted of [3]) making
possible and efficient the nonparametric modelling of functional data analysis. A special
attempt will be paid to the topological considerations used to control the effects of the
infinite dimension.

In a second attempt the talk will present some recent results (extracted from [2]) linked
with the using of nonparametric functional estimates for the construction of structural
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testing procedures in functional regression.

This talk will be illustrated by means of examples extracted of [4].

References

[1] Bosq, D. (2000) Linear processes in functions spaces. Theory and Applications. Lec-
ture Notes in Statistics, 149, Springer-Verlag, New York.

[2] Delsol, L. (2008). Régression sur variables fonctionnelles: Estimation, tests de struc-
ture et applications. PhD thesis, Toulouse, June 17, 2008.

[3] Ferraty, F. and Vieu, P. (2006). Nonparametric functional data analysis. Springer
Series in Statistics, New York.

[4] Ferraty, F. and Vieu, P. (2006). NPFDA in practice. Free access on line at
http://www.lsp.ups-tlse.fr/staph/npfda/

[5] Ramsay, J. and Silverman, B. (1997). Functional data analysis. Springer Series in
Statistics, New York.

[6] Ramsay, J. and Silverman, B. (2005). Functional data analysis (Second edition).
Springer Series in Statistics, New York.
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Invited talk 2

Functional Additive Modeling

Hans-Georg Müller
University of California at Davis, USA

Abstract. The functional linear regression model imposes structural con-
straints which are sometimes too restrictive. A nonlinear functional regres-
sion model is proposed which retains many of the nice asymptotic features
of functional linear regression, but at the same time is much more flexible.
This extension being analogous to the extension of multivariate regression to
additive regression, the proposed model is referred to as functional additive
regression. The additive model is easy to implement, and we demonstrate its
usefulness in applications.

This is joint work with Fan Yao.
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Invited talk 3

New perspectives about error
distribution based tests in
nonparametric regression

Juan Carlos Pardo-Fernández1

Departamento de Estat́ıstica e Investigación Operativa. Universidade de Vigo, Spain

Abstract. Statistical testing procedures in regression models based on the
estimation of the error distribution have been recently proposed in the liter-
ature. In the first part of this talk we will revise the general idea of those
testing procedures and give some examples. In the second part, we will dis-
cuss some new perspectives of the method.

1 Introduction

Let us consider a general nonparametric regression model

Y = m(X) + σ(X)ε,

where Y is the response variable related to the covariate X through the regression
function m and the variance function σ, and ε is the regression error with distribution
Fε(y) = P (ε ≤ y).

Given a sample (Xi, Yi), i = 1, . . . , n, from the pair (X,Y ), Akritas and Van Keilegom
(2001) proposed estimating the error distribution, Fε, by the empirical distribution of
the residuals estimated nonparametrically, that is,

F̂ε(y) =
1
n

n∑
i=1

I

(
Yi − m̂(Xi)
σ̂(Xi)

≤ y
)
,

1Research supported by Ministerio de Educación y Ciencia, Xunta de Galicia and Universidade de
Vigo.
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where m̂ and σ̂ are appropriate nonparametric estimators of the regression function and
variance function, respectively.

The estimator of the error distribution can be used to test hypothesis concerning
the elements of the regression model (the regression function, the variance function and
the error distribution itself). Let H0 denote a hypothesis about any element of the
regression model. The basic idea of the testing procedure is to compare two estimates of
the error distribution: the nonparametric one introduced above, F̂ε, and a new one which
incorporates information from the null hypothesis, F̂ε0. Then, Kolmogorov-Smirnov and
Cramér-von Mises type statistics are considered and the critical values of the test are
approximated by a smooth bootstrap procedure.

2 Summary of the talk

In the first part of this talk, we will review the tests based on the estimation of the
error distribution that have recently appeared in the literature: tests for the parametric
form of the regression function (see Van Keilegom, González-Manteiga and Sánchez-
Sellero, 2007), comparison of regression curves (see Pardo-Fernández, Van Keilegom and
González-Manteiga, 2007), tests about the equality of error distributions (see Pardo-
Fernández, 2007), and tests for the parametric form of the variance function (see Dette,
Neumeyer and Van Keilegom, 2007).

In the second part of the talk we show some new perspectives of this kind of tests.
Firstly, we will briefly present the estimator of the error distribution with multiple co-
variates studied by Neumeyer and Van Keilegom (2008), and show how these authors
employ it to test for additivity. Finally, we will discuss the test for multiplicative mod-
els proposed by Dette, Pardo-Fernández and Van Keilegom (2008) in a dependent data
setup.

References

Akritas, M. G. and Van Keilegom, I. (2001). Non-parametric estimation of the residual
distribution. Scandinavian Journal of Statistics, 28, 549-567.

Dette, H., Neumeyer, N. and Van Keilegom, I. (2007). A new test for the parametric form
of the variance function in nonparametric regression. Journal of the Royal Statistical
Society – Series B, 69, 903-917.

Dette, H., Pardo-Fernández, J.C. and Van Keilegom, I. (2008). Goodness-of-fit tests for
multiplicative models with dependent data. Manuscript.

Neumeyer, N. and Van Keilegom, I. (2008). Estimating the error distribution in non-
parametric multiple regression with applications to model testing. Manuscript.

Pardo-Fernández, J. C. (2007). Comparison of error distributions in nonparametric re-
gression. Statistics and Probability Letters, 77, 350-356.

Pardo-Fernández, J. C., Van Keilegom, I. and González-Manteiga, W. (2007). Testing
for the equality of k regression curves. Statistica Sinica, 17, 1115-1137.

Van Keilegom, I., González-Manteiga, W. and Sánchez-Sellero, C. (2008). Goodness-of-
fit tests in parametric regression based on the estimation of the error distribution.
TEST, 17, 401-415.
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Invited talk 4

Nonparametric analysis of
covariance using quantile
curves

Holger Dette
Ruhr-Universität Bochum, Germany

Abstract. In this paper a new nonparametric estimate of conditional quan-
tiles is proposed, that avoids the crossing problem. The method uses an initial
estimate of the conditional distribution function in a first step and solves the
problem of inversion and monotonization with respect to p ∈ (0, 1) simulta-
neously. The asymptotic properties of the new estimate are investigated and
its performance is illustrated by means of a simulation study. The results are
used to construct a test for the hypothesis that k quantile curves coincide.
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Invited talk 5

Testing for monotonicity of
nonparametric regression
functions

Natalie Neumeyer
University of Hamburg, Germany

Abstract. We explain how increasing regression functions can be estimated
by increasing rearrangements of unconstrained nonparametric estimators.
Possibilities of applying such constrained estimators to test for monotonicity
of regression functions and problems arising from the asymptotic expansion
of the estimators are discussed. We propose several new tests for mono-
tonicity based on different empirical processes of residuals. The asymptotic
distributions and small sample performances are presented.

This is joint work with Melanie Birke.
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Invited talk 6

Inference problems with
resampling

Stefan Sperlich
Institute for Statistics and Econometrics. Georg-August-Universität Göttingen, Germany

Abstract. In statistics and econometrics, bootstrap methods are a com-
monly used tool for constructing confidence bands (uniform or point-wise) or
to approximate critical values for specification tests. As already mentioned
and explained in Härdle and Marron (1990, 1991), in most cases oversmooth-
ing is necessary for the pre-estimation of the underlying (null hypothesis)
model from which bootstrap samples will be drawn. This is what tells us
theory, and also to what people usually refer to when proposing a new test
or estimator.

In practice, however, basically nothing is known about how to choose that
smoothing parameter (for kernel methods the bandwidth) to guarantee the
claimed coverage probability or to hold the nominal size of a test. Dette
et al. (2005) studied additivity tests but could not identify one that per-
formed properly. Also Rodŕıguez-Poó et al. (2007) proposed an adaptive
[i.e. adaptive for the bandwidth of the test, respectively the alternative, see
Spokoiny (2001) and Guerre and Lavergne (2005)] omnibus test for general-
ized structured models but had to switch to subsampling methods. In parallel,
Davidson and MacKinnon (1999), Davidson and Flachaire (2001) worked in
different papers on the size distortion of bootstrap tests.

Another point is that if the bandwidth is estimated to be data adaptive,
then the bootstrap samples, and consequently the whole bootstrap inference
are conditioned on this bandwidth. In other words, the confidence bands for
example will not hold the level for estimated or random bandwidths.

We discuss possible methods, rule of thumb and more sophisticated ones,
to find a smoothing parameter that gives a test fulfilling both: holding the
level and having non trivial power. Among other results, it turns out that
none of the known double bootstrap methods helps. However, adapting the
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method of an automatic choice of subsample size in subsam- pling tests turns
out to produce promising results. In order to do such a study properly,
it is necessary to discuss jointly the choice of other parameters which may
significantly affect the size or coverage probability.

This talk is based on joint work with Dette and v. Lieres und Wilkau,
Rodŕıguez-Poó and Vieu, and Barrientos-Maŕın.

References

Davidson, R. and Flachaire, E. (2001). The Wild Bootstrap, Tamed at Last. Working
Papers 1000, Queen’s University, Department of Economics.

Davidson, R. and MacKinnon, J.G. (1999). The size distortion of bootstrap tests. Econo-
metric Theory, 15, 361-376.

Dette, H., von Lieres und Wilkau, C., and Sperlich, S. (2005). A Comparison of Dif-
ferent Nonparametric Method for Inference on Additive Models. J. Nonparametric
Statistics, 17, 57-81.

Guerre, E. and Lavergne, P. (2005). Data-driven rate-optimal specification testing in
regression models. Annals of Statistics, 33(2), 840-870.

Härdle, W. and J.S. Marron (1990). Semiparametric Comparison of Regression Curves.
Annals of Statistics, 18, 63-89.

Härdle, W. and J.S. Marron (1991). Bootstrap Simultaneous Bars For Nonparametric
Regression. Annals of Statistics, 19, 778-796.

Rodŕıguez-Poó, J.M., Sperlich, S., and Vieu, P. (2007). An Adaptive Specification Test
for Semiparametric Models. Preprint Centre for Statistics, zfs-2007-01.

Spokoiny, V. (2001). Data-driven testing the fit of linear models. Mathematical methods
of statistics, 10, 465-497.
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Invited talk 7

Every missing not at random
model for incomplete data has
got a missing at random
counterpart with equal fit

Geert Molenberghs
Universiteit Hasselt and Katholieke Universiteit Leuven, Belgium

Abstract. Over the last decade, a variety of models to analyze incomplete
multivariate and longitudinal data have been proposed, many of which al-
lowing for the missingness to be not at random (MNAR), in the sense that
the unobserved measurements influence the process governing missingness,
in addition to influences coming from observed measurements and/or covari-
ates. The fundamental problems implied by such models, to which we refer
as sensitivity to unverifiable modeling assumptions, has, in turn, sparked off
various strands of research in what is now termed sensitivity analysis. The
nature of sensitivity originates from the fact that an MNAR model is not
fully verifiable from the data, rendering the empirical distinction between
MNAR and random missingness (MAR), where only covariates and observed
outcomes influence missingness, hard or even impossible, unless one is pre-
pared to accept the posited MNAR model in an unquestioning way. We show
that the empirical distinction between MAR and MNAR is not possible, in
the sense that each MNAR model fit to a set of observed data can be repro-
duced exactly by an MAR counterpart. Of course, such a pair of models will
produce different predictions of the unobserved outcomes, given the observed
ones. This is true for any model, whether formulated in a selection model
(SeM), pattern-mixture model (PMM), or shared-parameter model (SPM)
format. Specific attention will also be given to the SPM case, since we are
able to provide a formal definition of MAR in this case.

Theoretical considerations are supplemented with illustrations based on a
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clinical trial in onychomycosis and on the Slovenian Public Opinion survey.
The implications for sensitivity analysis are discussed.

Missing data can be seen as latent variables. Such a view allows extension
of our results to other forms of coarsening, such as grouping and censoring. In
addition, the technology applies to random effects models, where a parametric
form for the random effects can be replaced by certain other parametric (and
non-parametric) form, without distorting the model’s fit, latent classes, latent
variables, etc.

This is joint work with M.G. Kenward, G. Verbeke, C. Beunckens and C.
Sotto.

References

Creemers, A., Hens, N., Aerts, M., Molenberghs, G., Verbeke, G., and Kenward, M.G.
(2008). Shared-parameter models and missingness at random. Submitted for publi-
cation.

Molenberghs, G., Beunckens, C., Sotto, C., and Kenward, M.G. (2008) Every missing
not at random model has got a missing at random counterpart with equal fit. Journal
of the Royal Statistical Society, Series B, 70, 371-388.

Verbeke, G. and Molenberghs, G. (2008). Arbitrariness of models for augmented and
coarse data, with emphasis on incomplete-data and random-effects models. Submitted
for publication.
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Invited talk 8

The Multivariate
Kaplan-Meier Estimator

Winfried Stute
University of Giessen, Germany

Abstract. Over the last two decades there have been many efforts to extend
the Kaplan-Meier estimator for right-censored data to the multivariate case.
In our talk we present and discuss a new estimator which comes up as a
solution of an eigenvalue problem. It constitutes a bona fide estimator and
has the classical Kaplan-Meier estimator as its marginals. We also study the
efficiency and asymptotic properties of the new estimator.

This is joint work with Arusharka Sen (Montreal).
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Invited talk 9

Goodness-of-fit tests in mixed
models

Gerda Claeskens
Katholieke Universiteit Leuven, Belgium

Abstract. Availability of large sets of data, some with many variables but
only few replicates, others with many repeated observations per subject, asks
for advanced models. Often, one uses a mixture of random and fixed effects for
describing these data. For example, in microarray experiments one typically
has information on thousands of genes, with only a few replicates. This is a
situation where a “classical” model with only fixed effects would fail, since
the number of variables (genes) largely exceeds the number of observations
(replicates). Random effects location-scale models may be applied for such
purposes where the effect of the genes is assumed to follow some distribution.
Often, normality is assumed. In this work we address ways in which we
formally can test this hypothesis of normality in a mixed effects model.
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Invited talk 10

Nonlinear methods for variable
selection

Peter Hall
University of Melbourne, Australia

Abstract. The conventional approach to variable selection, based on a linear
model, can perform very effectively provided the response to relevant com-
ponents is approximately monotone and its gradient changes only slowly. In
other circumstances, nonlinearity of response can result in significant vector
components being overlooked. Even if good results are obtained by linear
model fitting, they can sometimes be bettered by using a nonlinear approach.
These circumstances can arise in practice, with real data, and they motivate
alternative methodologies. We suggest an approach based on ranking gener-
alised empirical correlations between the response variable and components
of the explanatory vector. This technique is not prediction-based, and can
identify variables that are influential but not explicitly part of a predictive
model.
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Invited talk 11

Geostatistics of extremes

Anthony Davison
Ecole Politechnique Fédérale de Lausanne, Switzerland

Abstract. Climatic change is forecast to change the frequency and sizes
of extreme events such as major storms, heatwaves and the like, and the ef-
fects on human mortality, health and infrastructure are starting to become
of major concern to public health authorities, engineers, and other planners.
Predicting the possible impacts of such events necessarily entails extrapola-
tion outside the range of the available data, and the usual basis for this is
the statistics of extremes and its underlying probability models. Analysis of
extreme events for single series of data is now well-established and used in
a variety of disciplines, from hydrology through metallurgy to finance and
insurance, but the corresponding methods for modelling events in space are
underdeveloped. This talk will outline an approach to extending models for
statistics of extremes to the spatial context, illustrated by examples.
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Invited talk 12

Randomized sequential
prediction: performance and
algorithms

Gabor Lugosi
Universitat Pompeu Fabra, Spain

Abstract. We consider a family of prediction problems in which a forecaster
sequentially predicts an unknown sequence. The goal of the forecaster is to
predict almost as well as the best in a class of reference strategies. It was
shown by Hannan and Blackwell in the 1950’s that there exist randomized
forecasting strategies that achieve this goal, regardless of what the unknown
sequence is. Many variations of the problem has been studied, including sit-
uations in which the forecaster has limited access to the past elements of the
sequence. The multi-armed bandit problem is a classical example. When the
class of reference strategies is large, efficient computation of the randomized
strategies becomes a nontrivial challenge. In this talk we discuss some fast
algorithms that have been developed recently for a variety of problems, in-
cluding the minimum-weight path problem, the ”expert tracking” problem,
and the minimum-weight spanning tree problem. Parts of this talk are based
on joint work with Nicolo Cesa-Bianchi, Andras Gyorgy, Tamas Linder, Gy-
orgy Ottucsak, and Gilles Stoltz.
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Invited talk 13

Wavelet methods in statistics:
some recent developments and
their applications

Anestis Antoniadis
Université Joseph Fourier at Grenoble, France

Abstract. The development of wavelet theory has in recent years spawned
applications in signal processing, in fast algorithms for integral transforms,
and in image and function representation methods. This talk attempts to
synthesize some recent work on “nonlinear” wavelet methods in nonparamet-
ric curve estimation and their role on a variety of applications. We discuss
in detail several wavelet shrinkage and wavelet thresholding estimators, scat-
tered in the literature and developed, under more or less standard settings,
to denoise data modeled as observations of a signal with additive noise. Most
of these methods are fitted into the general concept of regularization with
appropriately chosen penalty functions. The usefulness of all these methods
are illustrated by means of simulations and practical examples.
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Empirical likelihood for
non-smooth criterion functions

Ingrid Van Keilegom
Université catholique de Louvain, Belgium

Abstract. Suppose that X1, . . . , Xn is a sequence of independent random
vectors, identically distributed as a d-dimensional random vector X. Let
µ ∈ Rp be a parameter of interest and ν ∈ Rq be some nuisance parameter.
The unknown, true parameters (µ0, ν0) are uniquely determined by the system
of equations E{g(X,µ0, ν0)} = 0, where g = (g1, . . . , gp+q) is a vector of p+q
functions. In this paper we develop an empirical likelihood method to do
inference for the parameter µ0. The results in this paper are valid under very
mild conditions on the vector of criterion functions g. In particular, we do not
require that g1, . . . , gp+q are smooth in µ or ν. This offers the advantage that
the criterion function may involve indicators, which are encountered when
considering e.g. differences of quantiles, copulas, ROC curves, to mention just
a few examples. We prove the asymptotic limit of the empirical log-likelihood
ratio, and carry out a small simulation study to test the performance of the
proposed empirical likelihood method for small samples. This is joint work
with Noël Veraverbeke and Elisa Molanes-López.
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Invited talk 15

A general uniform in
bandwidth consistency result
with applications

Jan Swanepoel
North-West University, Potchefstroom Campus, South Africa

Abstract. A kernel-type function estimator is sensitive to the choice of the
bandwidth h used. An appropriate choice of h is therefore needed to produce
an estimator which has, for example, a relatively small mean squared error.
Such an optimal h will depend on the underlying distribution of the data.
Hence, a data-based choice of h (usually referred to as a selector) is required.
This, however, entails that the behaviour of the resulting kernel-type function
estimator cannot be investigated analytically by the standard methods for
estimators based on deterministic bandwidth sequences.

Einmahl and Mason (2005) introduced a method to prove uniform in band-
width ( UIB(h)) and uniform in location (x) strong consistency of the kernel
density estimator, the Nadaraya-Watson regression function estimator and
the conditional empirical process. They showed that their results are imme-
diately applicable to establish uniform strong consistency of these kernel-type
estimators when the bandwidth h is a function of the data and/or x . Dony,
Einmahl and Mason (2006) derived a similar result for local polynomial re-
gression function estimators.

In this presentation I shall discuss a new general UIB(h) consistency theo-
rem. The results of the above-mentioned authors can be readily derived from
this theorem. It also yields UIB(h) extensions of some results by Boos (1986).
Moreover, an UIB(h) Finkelstein-type functional Law of the Iterated Loga-
rithm ( LIL ) can be obtained for a sequence of kernel distribution function
estimator ( KDFE ) random functions. In particular, this implies an UIB(h)
Chung LIL . An UIB(h) functional CLT for centered KDFE processes is dis-
cussed, and some oscillation results for the classical empirical process and the
KDFE process are given.
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It is shown that similar results also hold for the KDFE based on a nonpara-
metric transformation of the data, introduced by Swanepoel and Van Graan
(2005), as well as for the smoothed nearest neighbour type regression func-
tion estimator, proposed by Stute (1984). Finally, a practical example will
be discussed regarding a nonparametric kernel-type method for transforming
data to any given continuous distribution.
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Shape-restricted regression in
the presence of correlated
errors

Jean Opsomer
Colorado State University, USA

Abstract. In many data analysis situations, the shape of a regression func-
tion cannot be specified to belong to a particular parametric family, so that
nonparametric estimation methods are most appropriate. However, it is also
common in practice that, in addition to the often-assumed smoothness un-
derlying most nonparametric methods, other qualitative characteristics of the
function are known, such as that the function is increasing or convex. In such
cases, estimating the function nonparametrically but subject to shape con-
straints has a number of important advantages such as improved efficiency
and robustness to the choice of tuning parameters. We consider here non-
parametric estimation of a regression function under shape constraints and
in the presence of correlated errors. We propose methods to estimate both
the mean and the correlation functions, and show that the good practical and
theoretical properties of shape-restricted smoothing continue to hold in this
case.

This is joint with Mary Meyer.
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Least squares and shrinkage
estimation under
bimonotonicity constraints

Lutz Duembgen
University of Bern, Switzerland

Abstract. We describe an active set algorithm for minimization of a smooth
function on the set of (r× c) matrices which are bimonotone. This algorithm
can be used, for instance, to estimate a bimonotone regression function via
least squares or least absolute deviations. Another application is shrinkage
estimation in image denoising or, more generally, regression problems with
two ordinal factors after representing the data in a suitable basis which is
indexed by pairs (i, j) in (1, ..., r) × (1, ..., c). Various numerical examples
illustrate our methods.

This is joint work with Rudolph Beran, University of California at Davis.
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Selected contributed paper 1

Specification tests for the
distribution of errors in
nonparametric regression:
a martingale approach

Juan Mora
Universidad de Alicante, Spain

Alicia Pérez-Alonso
European University Institute, Italy

Abstract. We discuss how to test whether the distribution of regression
errors belongs to a parametric family of continuous distribution functions,
making no parametric assumption about the conditional mean or the con-
ditional variance in the regression model. More specifically, let (X,Y ) be a
bivariate continuous random vector such that E(Y 2) is finite, denote m(x) ≡
E(Y |X = x), σ2(x) ≡ Var(Y |X = x) and consider the error term ε ≡
{Y − m(X)}/σ(X), which is, by definition, a zero-mean unit-variance ran-
dom variable. If Fε(·) denotes the c.d.f. of ε and F ≡ {F (·, θ), θ ∈ Θ ⊂ Rm}
denotes a parametric family of zero-mean unit-variance continuous c.d.f.’s,
each of them known except for the parameter vector θ, we propose a testing
procedure to face the hypotheses

H0 : ∃ θ0 ∈ Θ such that Fε(·) = F (·, θ0), vs.
H1 : Fε(·) /∈ F ,

when independent and identically distributed observations {(Xi, Yi), i =
1, . . . , n}, with the same distribution as (X,Y ), are available. In principle, one
could think of using a Kolmogorov-Smirnov or a Cramér-von Mises statistic,
constructed replacing errors by residuals and parameters by estimates. How-
ever, using the results derived in Akritas and Van Keilegom (2001, Scandina-
vian Journal of Statistics) the asymptotic distribution of these residual-based
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statistics can be derived, and it proves to be not asymptotically distribution-
free, a property that is already well-known in the literature. Then, we follow
the methodology introduced in Khmaladze (1993, Annals of Statistics) to de-
rive asymptotically distribution-free martingale-transformed test statistics.
Finally, we derive the asymptotic distribution and the consistency of these
martingale-transformed statistics under appropriate conditions. Two Monte
Carlo experiments show that the transformed statistics work reasonably well
in terms of size and power, and that their behaviour is not very sensitive to
the choice of the smoothing value.
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Selected contributed paper 2

√
n-uniformly consistent

density estimation in
nonparametric regression
models

Juan Carlos Escanciano
Department of Economics. Indiana University

David Jacho-Chávez
Department of Economics. Indiana University

Abstract. The paper introduces a
√
n -consistent estimator of the proba-

bility density function of the response variable in a nonparametric regression
model. The proposed estimator is shown to have a (uniform) asymptotic nor-
mal distribution, and it is computationally very simple to compute. A Monte
Carlo experiment confirms our theoretical results, and an empirical applica-
tion demonstrates its usefulness. The results derived in the paper adapts
general U-processes theory to the inclusion of infinite dimensional nuisance
parameters.
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Selected contributed paper 3

Efficient estimation for the
Accelerated Failure Time
Model for forward recurrence
times

Rajat Mukherjee
Biostatistics. Public Health Foundation of India

Michael Kosorok
Biostatistics. University of North Carolina - Chapel Hill

Jason Fine
Statistics. University of Wisconsin - Madison

Abstract. We study semiparametric efficient estimation of the regression
parameter for Accelerated Failure Time models fitted to length-biased preva-
lent cohort data giving rise to forward recurrence times. We show that an
efficient estimator in the core incident cases will still be efficient here. We
derive an efficient estimator for the general setup that is also applicable for
forward recurrence times.

1 Introduction

In prevalent cohort studies, diseased subject are enrolled at a cross-section and followed
prospectively. In such applications of survival studies often the disease onset times are
unknown and we only observe the time from sampling to the event of interest. This
is the forward recurrence time (FRT). FRTs are length-biased and subjected to a mul-
tiplicative censoring scheme at the cross-section (VanEs et. al., 2000). In presence of
covariates, the proportional hazards model may not be valid as the proportional structure
is not preserved under length-biasedness and multiplicative censoring. However, it has
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been shown that the accelerated failure time (AFT) model is preserved when he disease
incidence process can be assumed to be stationary (VanEs et. al. 2000).

This leads to the question as to whether or not existing regression estimators for the
AFT model are valid for the FRT case and in particular if efficiency is preserved. The
problem however is that under length-biasedness the resulting covariate distribution is
not free of the regression parameter (θ). Since existing estimators rely on conditioning
on the covariates, a ”naive” analysis may result in loss of efficiency. In section 2 we
derive the semiparametric efficient score and show that if the core covariate distribution
is left completely unspecified then there is no loss of efficiency due to conditioning on
the covariates. Infact, an efficient estimator for the core incident cases is also efficient
for the FRT cases.

In section 3 we derive a efficient estimator for θ for the general AFT model under
right censoring as the maximizer of the estimated profile log-likelihood. The latter is
obtained by writing the log-likelohood in terms of a least-favorable sub-model (Murphy
and van der Vaart, 2000) and substituting it by an estimator that converges at a rate
faster than n−1/4. This estimator can also be used to estimate the core incident-case
survival curve from FRT data.

2 Score calculus

Let T be the core incident case failure time i.e. the time from a certain initiating event like
birth or disease onset to the event of interest like death with corresponding distribution
FT . In prevalent cohort study designs only subjects who have experienced the initiating
but not the terminating event prior to sampling can be sampled and we observe the time
from sampling to the terminating event (T̃ ). Thus the sample is length-biased i.e. biased
towards larger realizations of T . The distribution FLB for the length-biased version TLB
of T can be written as FLB(t) =

∫ t
0
udFT (u)/µT , where, µT =

∫∞
0
udFT (u) (Cox, 1969).

Further, if a stationary Poisson process can be assumed for the disease incidence then
the sampling time can be shown to be uniformly distributed between the initiating and
terminating times (Cox, 1969 and VanEs et. al., 2000). Thus T̃ = TLBV , where V ∼
Uniform(0,1). It follows that T̃ has density

gT̃ =
1− FT (t)

µT
≡ ST (t)

µT
. (1)

Suppose that Z is the covariate vector with corresponding to T and with density h,
then under the AFT model,

T = eθ
′ZU, (2)

where, θ is the p × 1 regression parameter and U a non-negative random variable inde-
pendent of Z and with density g, survival function S and hazard λ(u) ≡ g(u)/S(u). It
follows from (1) that T̃ with covariates (Z̃) collected at the cross-section also follow the
AFT model given by

T̃ = eθ
′Z̃Ũ , (3)

where Z̃ ∼ eθ′zh(z)/
∫
eθ
′zh(z)dz and Ũ ∼ S(u)/

∫∞
0
S(v)dv.

We consider possibly right-censored FRT data (T̃i ∧ C̃i, δi, Z̃i; i = 1 · · ·n), where,
δi ≡ I{T̃ ≤ C̃} and assume that T̃ and C̃ are conditionally independent given Z̃, µg =
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∫
S(v)dv < ∞, EgU2λ(U) < ∞. Let θ0 be the true value of θ belonging to the interior

of Θ, which is a compact subset of <k. For any θ ∈ Θ, let U(θ) ≡ T̃ e−θ
′Z̃ and UC(θ) ≡

C̃e−θ
′Z̃ . The hazard function for U(θ) is then

λU(θ)(u) =
e(θ−θ0)′zS(e(θ−θ0)′zu)∫∞

e(θ−θ0)′zu
S(v)dv

.

Theorem 1 Suppose that the covariate vector Z̃ is almost surely bounded. Then the
efficient score for estimating θ in (3) is

l̃θ,S =
∫ Uc(θ0)

0

(z − E{Z̃|U c(θ0) ≥ s})Rφ(s)dM(s), (4)

where φ(u) = 1− ug(u)/S(u), Ra(t) = a(t)−
∫∞
t
a(u)S(u)du/

∫∞
t
S(u)du for a ∈ L0

2(S)
and M(t) = I{U(θ) ≤ t} −

∫ t
0
I{U(θ) > s}λU(θ)(s)ds.

Note that the above efficient score in (4) has been derived unconditionally on Z̃ because
of its dependence on θ. However, it does does not use any information in the marginal
distribution of Z̃. The reason being that the tangent sets of the two nuisance parameters
S and h are orthogonal. Further, (4) is similar to the one for the core incident cases
derived in Bickel, Klaassen, Ritov and Wellner, 1993, pg 150, except for the φ function.
The implications are: (i) FRT data can be analyzed conditionally on the covariates as in
the core incident case without any loss of information and (ii) Efficient estimators for θ
in (2) will also be efficient for θ in (3). However, the efficiency bounds may be different.

3 Efficient Estimation

Here we derive a asymptotically efficient estimator for θ in (2) using the profile likelihood
theory (Severini and Wong, 1992 and Murphy and van der Vaart, 2000). For arbitrarily
fixed θ define, εθ = log T − θ′Z and εcθ = logC − θ′Z and e ≡ eθ = εθ ∧ εcθ. The data
consists of n independent realizations of Y = (e, δ, Z). We specify the semiparametric
model in terms of the regression parameter θ and the hazard function λ of the errors by
P = {Pθ,λ : θ ∈ Θ, λ ∈ Λ}. Let (θ0, λ0) be the true value of the parameter and S0 be the
survival function corresponding to λ0. We further assume the following.

(A1) The covariate vector Z is bounded almost surely with density h.

(A2) θ0 belongs to the interior of an open and bounded set Θ ⊂ <k. Along with (A1)
this gives α ≡ ess. supθ∈Θ |(θ − θ0)′Z| <∞.

(A3) τ = supt{t : Pr[C > exp{t+α} | Z] > 0} exists and is finite and further S0(τ+α) >
0.

Let ζθ,z and γθ,z(t) ≡ exp{−
∫ t
−∞ λ0(s + (θ − θ0)′z)ds}ζθ,z(t) denote the survival

function of εcθ and the at-risk probability function respectively, given Z = z and under
Pθ,λ0 and consider the submodel θ 7→ λθ given by

λθ(t) =
∫
λ0(t+ (θ − θ0)′z)γθ,z(t)h(z)dz∫

γθ,z(t)h(z)dz
≡ gθ(t)
Gθ(t)

. (5)



ISNI2008 International Seminar on
Nonparametric Inference

39

We show that this is a least-favorable submodel in the sense of minimizing the Kulback-
Lieber distance and define the log-likelihood as

Ln(θ, λθ) =
n∑
i=1

{
δi log λθ(ei)−

∫ ei

−∞
λθ(u)du

}
(6)

An estimator for the above least favorable curve is obtained by solving a kernel-smoothed
self-consistent equation for the survival function for censored data (Efron, 1967 and
Cosslett, 2004) as

λ̂θ(t) =
h−1
n

∫
K
(
h−1
n (t− v)

)
dFn,θ(v)∫

K̄
(
h−1
n (t− v)

)
dGn,θ(v)

≡ ĝn,θ(t)
Ĝn,θ(t)

, (7)

where K is suitable kernel with bandwidth hn and Gn,θ and Fn,θ are the empirical
distribution functions of the observed residuals and uncensored residuals respectively.

Define θ̂ ≡ θ̂n to be the maximizer of Ln(θ, λ̂θ). In order to prove consistency of
θ̂, we show the uniform convergence of a trimmed version of Ln(θ, λ̂θ) to Ln(θ, λθ) and
apply the argmax theorem (corollary 3.2.2 in van der Vaart and Wellner, 1996). For
asymptotic normality and efficiency we show the uniform convergence of λ̂θ to λθ at a
rate n−ν1 where ν1 ≥ 1/4 and λ̂′θ to λ′θ at a rate n−ν2 where ν1 + ν2 ≥ 1/2 and apply
the profile likelihood theorem (Theorem 1 in Murphy and van der Vaart, 2000).

Numerical studies illustrate the estimation procedure and the finite-sample properties
of the proposed estimator.
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Uniform in bandwidth
consistency of the kernel–based
Hill estimator

Julia Dony
Department of Mathematics, Free University Brussels (VUB)

Abstract. We consider the kernel–based Hill estimator for the tail index of
a Pareto–type distribution and establish its weak consistency, uniformly in a
certain range of bandwidths tending to zero at particular rates. This “uniform
in bandwidth” result permits to consider estimators of the tail index that are
based upon data–dependent bandwidths or bandwidths depending on the
location.

1 Introduction and statement of the results

Let (Xi, Yi), i ≥ 1 be i.i.d. random vectors in Rd × R and let F be a class of measurable
functions ϕ : R→ R for which Eϕ2(Y ) <∞. For t ∈ Rd fixed, we denote the regression
function by mϕ(t) := E[ϕ(Y )|X = t] and consider the kernel–type estimator

ϕ̂n,h(t) :=
1
nhd

n∑
i=1

ϕ(Yi)K
( t−Xi

h

)
,

where K is a uniformly bounded kernel function with support contained in [−M,M ]d,
and where 0 < h < 1 is a bandwidth. Likewise, let f̂n,h(t) be the kernel density estima-
tor of fX(t), the density of X, which corresponds to the choice ϕ(y) ≡ 1 in the above
formula. If hn is a deterministic sequence of positive numbers going to zero and such
that nhdn/ log log n → ∞, it is well–known that under some regularity conditions, the
Nadaraya–Watson–type estimator m̂n,hn,ϕ(t) := ϕ̂n,hn(t)/f̂n,hn(t) is a (strongly) consis-
tent estimator for mϕ(t). Moreover, it was shown in Einmahl and Mason (2005) that
under some additional assumptions, the consistency of m̂n,h,ϕ(t) is preserved uniformly
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for t ∈ I where I ⊂ Rd is compact, and uniformly in an ≤ h ≤ bn for appropriate positive
sequences an and bn converging to zero.

The uniformity in h makes it possible to choose the bandwidth hn depending on the
data and/or the location. If the function class F is uniformly bounded, they show that
one can choose h from an interval of the form [cn log n/n, bn], where cn →∞ and bn → 0.
Assuming in the unbounded case that the envelope function F of F satisfies the condition

(F.p) µp := sup
x∈J

E [F p(Y )|X = x] <∞ for some p > 2,

where J = Iε for some ε > 0, it is shown that their result remains valid if one chooses
adn ≥ c(log n/n)1−2/p. In addition, the corresponding convergence rates of ϕ̂n,h(t) to
mϕ(t)fX(t) have been obtained in both cases as well.

In the following we shall describe uniform in bandwidth results for ϕ̂n,h(t) at fixed
points t ∈ Rd, i.e. pointwise and not uniformly over compact subsets. This will allow us to
achieve the unifomity in h on larger intervals than in the previously mentioned “uniform
on compacts” case, hence improving the result by Einmahl and Mason (2005). In Section
2, our “pointwise” uniform in bandwidth results will turn out to be particularly useful to
establish the uniform in bandwidth consistency of a class of kernel tail index estimators.

Towards establishing these consistency results, we impose some additional conditions.
In particular, we consider classes F such that

(F.i) F is pointwise measurable,
(F.ii) F has a measurable envelope function F (y) ≥ supϕ∈F |ϕ(y)|, y ∈ R,
(F.iii) F is a VC class of functions,

and we let an, n ≥ 1 be a sequence of non–random numbers satisfying

(H.i) an ↘ 0,
(H.ii) adn log log n↘ and nadn/ log log n↗,

where “↗,↘” denote non–decreasing and non–increasing respectively. For convenience,
we recall the assumptions on the kernel function K : Rd → R.

(K.i) supx∈Rd |K(x)| <∞ and
∫
K(x)dx = 1,

(K.ii) K has support contained in [−M,M ]d for some M > 0.

The pointwise uniform–in–h result for ϕ̂n,h(t) that we present here holds when F
admits a finite moment generating function. Clearly, this is more general than considering
a bounded class of functions. Moreover, this extension seems to be new, also for fixed
bandwidth sequences.

Theorem 1 Suppose that the envelope function of F has a finite moment generating
function in a neighborhood of 0. Then if fX is bounded on a neighborhood of t, and
b0 < 1 is a positive constant, it follows from the above mentioned assumptions on F and
K that

lim sup
n→∞

sup
an≤h≤b0

sup
ϕ∈F

√
nhd|ϕ̂n,h(t)− Eϕ̂n,h(t)|√

log log n
<∞, a.s.,

for all non–increasing sequences an that go to zero at rates given by (H.ii).
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It is well known that the condition in (H.ii) is optimal in the bounded case, so that
Theorem 1 shows that there is no difference in terms of range of bandwidths between
the bounded case and the case where F admits a finite moment generating function.
We note that similar extensions under moment–type conditions like (F.p) have also been
considered in Dony (2008).

Our uniform in bandwidth results are important in establishing the consistency of
kernel regression estimators using a data–dependent bandwidth sequence ĥn := Hn(X1,
. . . , Xn), n ≥ 1. More particularly to show that almost surely or in probability,
supϕ∈F |m̂n,ĥn,ϕ

(t) −mϕ(t)| → 0. Detailed proofs of such results are provided in Dony
(2008) and are based upon an empirical process representation of ϕ̂n,h(t), where the index
class is a class of functions that depends upon the sample size n ≥ 1. The main tools are
some moment and exponential deviation inequalities for empirical processes. To achieve
the consistency uniformly in bandwidth, a blocking is applied and the interval [an, b0] is
split into several smaller intervals.

2 Application to extreme value statistics

Let Y1, . . . , Yn be independent real valued variables with a Pareto–type distribution with
tail index τ > 0, meaning that there exists a number τ > 0 such that

(F.τ) lim
y→∞

1− F (λy)
1− F (y)

= λ−τ , λ > 0.

The main concern is to provide a consistent estimator for the tail index τ > 0. To do so,
Hill (1975) proposed an estimator based upon the k largest observations, namely

τ̂n(k) :=
(1
k

k∑
i=1

log Yn−i+1:n − log Yn−k:n

)−1

,

where Yi:n, 1 ≤ i ≤ n denote the order statistics of Y1, . . . , Yn. It has been shown in Mason
(1982) that consistency of τ̂n(k) cannot be achieved without letting k going to infinity.
Moreover, necessary and sufficient conditions for τ̂n(k) →P τ are that k = kn → ∞ and
kn/n→ 0. Somewhat later, Csörgő, Deheuvels and Mason (1985) proposed the following
kernel–based estimator for τ , namely

τ̂n,h :=
1
nh

∑n
j=1K

(
j
nh

)∑n
j=1

j
nhK

(
j
nh

)
{log Yn−j+1:n − log Yn−j:n}

=:
κn,h
φn,h

.

Note that when K(u) = 1I{0 < u < 1} and h = k/n, the kernel–based Hill estimator
corresponds to the classical Hill estimator. The advantage of considering an extended
kernel–based version of τ̂n(k) is that it permits to reduce the expected mean squared error
by choosing an appropriate bandwidth and kernel function. The following proposition
provides the uniform in bandwidth consistency of τ̂n,h to τ .

Proposition 2 Let τ̂n,h be the kernel–based Hill estimator based upon i.i.d. variables
Y1, . . . , Yn with a Pareto–type distribution of tail index τ > 0, and defined with a kernel
function satisfying (K.i)–(K.iv) below. Then it holds for any non–random sequences
an ≤ bn with bn → 0 and satisfying nα/2aα+1

n →∞ that supan≤h≤bn |τ̂n,h − τ | = oP(1).
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It is worth to notice that τ̂n,h is expressed in terms of a process similar to ϕ̂n,h(t),
though with a fixed design {j/nh, 1 ≤ j ≤ n}. Therefore, before handling the es-
timator as such, we start with an analogue of Theorem 1 for the process β̂n,h :=
(nh)−1

∑n
i=1 YiK(ti,n/h), where ti,n = i/(n + 1). (Refer to Dony (2008) for a detailed

proof of the following theorems.)

Theorem 3 Let Y1, Y2, . . . be i.i.d. variables with mean γ ≥ 0 and satisfying E exp(s|Y1|)
< ∞ for some s > 0. If K is Hölder–continuous with exponent 0 < α ≤ 1, it follows that
supan≤h≤b0 |β̂n,h − Eβ̂n,h| →P 0 provided nα/2aα+1

n →∞.

The proof of Proposition 2 will be a consequence of Theorem 4 below, which is based
upon a decomposition of φn,h and an application of Theorem 3 . To see this, note that
(F.τ) implies that Yi =d (1 − Ui)−1/τL((1 − Ui)−1), where U1, . . . , Un are independent
variables uniformly distributed in ]0, 1[ and L is a slowly varying function at infinity.
Hence, by Karamata’s representation,

log Yn−j+1:n − log Yn−j:n
d= −τ−1{log(1− Un−j+1:n)− log(1− Un−j:n)}

+
∫ (1−Un−j+1:n)−1

(1−Un−j:n)−1

b(u)
u
du + log

c((1− Un−j+1:n)−1)
c((1− Un−j:n)−1)

,

where c(y) → c0 > 0 and b(y) → 0 as y → ∞. Consequently, φn,h can be decomposed
into three processes as follows :

φn,h
d=

n∑
j=1

j

nh
K
( j
nh

)
{τ−1A

(1)
n,j +A

(2)
n,j +A

(3)
n,j} =: τ−1φ

(1)
n,h + φ

(2)
n,h + φ

(3)
n,h.

To deal with the asymptotic behavior of φn,h, κn,h and thus τ̂n,h, uniformly in h, the
following (additional) assumptions on the kernel K need to be made :

(K.i) supx∈Rd |K(x)| <∞ and
∫
K(x)dx = 1,

(K.ii)′ K has support contained in [0,M ] for some M <∞,
(K.iii) K is non–increasing and non–negative on its positivity set,
(K.iv) K is Hölder–continuous on [0,M ] with exponent 0 < α ≤ 1.

Theorem 4 For any right–continuous kernel function satisfying (K.i)–(K.iii) and any
non–increasing sequences an ≤ bn such that bn → 0 and nan →∞, it holds that

(i) supan≤h≤bn |κn,h − 1| = o(1).

If moreover (K.iv) holds for some 0 < α ≤ 1 which is such that nα/2aα+1
n →∞,

(ii) supan≤h≤bn |φ
(1)
n,h − 1| = oP(1),

(iii) supan≤h≤bn |φ
(i)
n,h| = oP(1), i = 2, 3.

It follows now readily that supan≤h≤bn |τ̂n,h−τ | = oP(1), establishing the (weak) uniform
in bandwidth consistency of the kernel–based Hill estimator τ̂n,h to τ .
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Robust inference in generalized
partially linear models

Graciela Boente
Universidad de Buenos Aires and CONICET

Ricardo Cao
Universidade da Coruña

Wenceslao González–Manteiga
Universidade de Santiago de Compostela

Daniela Rodriguez
Universidad de Buenos Aires and CONICET

Abstract. In this talk, we introduce a family of robust statistics which allow
to decide between a parametric model and a semiparametric one. More pre-
cisely, under a generalized partially linear model, i.e., when the observations
satisfy yi|(xi, ti) ∼ F (·, µi) where µi = H(η(ti) + xt

i β) with H a known link
function, we want to test H0 : η(t) = α + γt against H1 : η is a smooth
function. A general approach which includes a robust version of the deviance
and a robustified quasi–likelihood is considered. The asymptotic behavior of
the test statistic under the null hypothesis is obtained.

Summary

Semiparametric models contain both a parametric and a nonparametric component.
Sometimes the nonparametric component plays the role of a nuisance parameter. A
lot of research has been done on estimators of the parametric component in a general
framework, aiming to obtain asymptotically efficient estimators. The aim of this talk
is to consider semiparametric versions of the generalized linear models where the re-
sponse y is to be predicted by covariates (x, t), where x ∈ IR and t ∈ T ⊂ IR with T
a compact set. Without loss of generality we will assume that T = [0, 1]. It will also
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be assumed that the conditional distribution of y|(x, t) belongs to the canonical expo-
nential family exp [yθ(x, t)−B (θ(x, t)) + C(y)], for known functions B and C. Then,
µ(x, t) = E (y|(x, t)) = B′ (θ(x, t)), with B′ as the derivative of B. In generalized linear
models (McCullagh and Nelder, 1989), which is a popular technique for modeling a wide
variety of data, it is often assumed that the mean is modeled linearly through a known
link function, g, i.e.,

g(µ(x, t)) = β0 + xtβ + αt .

For instance, an ordinary logistic regression model assumes that the observations
(yi,xi, ti) are such that the response variables are independent binomial variables yi|(xi, ti)
∼ Bi(1, pi) whose success probabilities depend on the explanatory variables through the
relation

g(pi) = β0 + xt
i β + αti ,

with g(u) = log
(

u
1−u

)
.

In many situations, the linear model is insufficient to explain the relationship between
the response variable and its associated covariates. A natural generalization, which
suffers from the curse of dimensionality, is to model the mean nonparametrically in the
covariates. An alternative strategy is to allow most predictors to be modeled linearly
while one or a small number of predictors enter the model nonparametrically. This is
the approach we will follow, so that the relationship will be given by the semiparametric
generalized partially linear model

µ(x, t) = E (y|(x, t)) = H
(
η(t) + xtβ

)
(1)

where H = g−1 is a known link function, β ∈ IR is an unknown parameter and η is an
unknown continuous function.

Severini and Wong (1992) introduced the concept of generalized profile likelihood,
which was later applied to this model by Severini and Staniswalis (1994). In this method,
the nonparametric component is viewed as a function of the parametric component, and√
n−consistent estimates for the parametric component can be obtained when the usual

optimal rate for the smoothing parameter is used. Such estimates fail to deal with
outlying observations.

Härdle, Mammen and Müller (1998) considered a test statistic to decide between a
linear and a semiparametric model. Their proposal is based on the estimation procedure
considered by Severini and Staniswalis (1994) modified to deal with the smoothed and
unsmoothed likelihoods. A comparative study of different procedure was performed by
Müller (2001).

As it is well known, such procedures fail to deal with outlying observations and so
does the test statistic. In a semiparametric setting, outliers can have a devastating effect,
since the extreme points can easily affect the scale and the shape of the function estimate
of η, leading to possibly wrong conclusions on β and on the hypothesis on η to be tested.

Robust procedures for generalized linear models have been considered among others
by Stefanski, Carroll and Ruppert (1986), Künsch, Stefanski and Carroll (1989), Bianco
and Yohai (1995), Cantoni and Ronchetti (2001), Croux and Haesbroeck (2002) and
Bianco, Garćıa Ben and Yohai (2005). The basic ideas from robust smoothing and from
robust regression estimation have been adapted to deal with the case of independent
observations following a partly linear regression model with H(t) = t; we refer to Gao
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and Shi (1997), He, Zhu and Fung (2002) and Bianco and Boente (2004). Under a gen-
eralized partially linear model (1), Boente, He and Zhou (2006) introduced a general
profile–based two–step robust procedure to estimate the parameter β and the function
η while Rodriguez (2008) developed a three–step method to improve the computational
time of the previous one. On the other hand, robust tests for a given alternative, under
a partly linear regression model were studied in Bianco, Boente and Mart́ınez (2006).
Besides, a robust approach for testing the parametric form of a regression function versus
an omnibus alternative, based on the centered asymptotic rank transformation, was con-
sidered by Wang and Qu (2007) when H(t) = t and β = 0, i.e., under the nonparametric
model yi = η0(ti) + εi.

In this talk, we will discuss a procedure to develop a robust test based on these
estimators to decide between a linear and a semiparametric model under a generalized
partially linear model (1). A bootstrap approach will also be considered.
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Time series clustering based on
nonparametric forecast

J.A. Vilar Fernández
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A.M. Alonso
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Department of Mathematics, University of Coruña, Spain

Abstract. A new clustering procedure based on nonparametric forecasts
is studied. The proposed procedure is valid to deal with a general class
of autoregressive processes, including nonlinear processes. Two alternative
approaches are considered to measure the dissimilarity between two time
series: the L1-distance between their forecast densities at a given horizon
and the mean squared difference of the forecasts.

1 Introduction

Time series clustering is aimed at classifying the series under study into homogeneous
groups in such a way that the within-group-series similarity is minimized and the between-
group-series dissimilarity is maximized. This a central problem in many application fields
and hence time series clustering is nowadays an active research area in different disciplines
including signal processing, finance and economics, medicine, seismology, meteorology
and pattern recognition, among others (see, e.g. Liao, 2005).

As with other clustering problem, the metric chosen to assess the similarity/dissimi-
larity between two data objects plays a crucial role in time series clustering. However,
the concept of dissimilarity between two time series is non trivial. Recently, Alonso et
al. (2006) argue that, in many practical situations, the real interest of clustering is the
long term behavior and, in particular, on how the forecasts at a specific horizon can
be grouped. For this kind of situation, they propose a dissimilarity measure based on
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comparing the full forecast densities associated to each series in the sample. Note that
comparing the forecast densities instead of the point forecasts can help to separate into
different clusters times series having similar or equal predictions but different underlying
generating models (e.g. models that differ only in the innovations distribution). In
practice, the forecast densities are unknown and must be approximated from the data.

In this paper, the clustering procedure proposed by Alonso et al. (2006) is extended
to cover the case of nonparametric models of arbitrary autoregressions. Our approach
does not assume any parametric model for the true autoregressive structure of the series,
which is estimated by using kernel smoothing techniques. In our procedure, the mecha-
nism to obtain bootstrap predictions is based on mimicking the generating process using
a nonparametric estimator of the autoregressive function and a bootstrap resample of
the nonparametric residuals. In this way, we provide an useful device for classifying non-
linear autoregressive time series, including extensively studied parametric models such as
the threshold autoregressive (TAR) models, the exponential autoregressive (EXPAR)
models, the smooth-transition autoregressive (STAR) models and the bilinear models,
among others (see e.g. Tong (1990) and the references included therein).

2 Description of the clustering procedure

Denote by Ξ the class of real valued stationary processes {Xt}t∈Z that admit a general
autoregressive representation of the form

Xt = m(XXXt−1) + εt, (1)

where {εt} is an i.i.d. sequence and XXXt−1 is a d-dimensional vector of known lagged
variables. The unknown autoregressive function m(·) is assumed to be a smooth function
but it is not restricted to any pre-specified parametric model. Hence, both linear and
nonlinear autoregressive processes are included in Ξ.

Our concern is to perform a cluster analysis on a set S of s partial realizations from
time series belonging to Ξ, i.e. S =

{
X(1),X(2), . . . ,X(s)

}
, where, for i = 1, . . . , s,

X(i) =
(
X

(i)
1 , . . . , X

(i)
T

)
. Following the ideas by Alonso et al. (2006), we adopt the

criterion of measuring the dissimilarity between two time series objects in terms of the
disparity between their corresponding full forecast densities at a specific future time
T + b or the mean square difference of the forecasts. Hence our purpose is that the
cluster solution captures similarities in the behaviors of the predictions at a prefixed
horizon.

Specifically, Alonso et al. (2006) use the following distance between time series X(i)

and X(j), with i, j = 1, . . . , s,

D0
ij =

∫ (
f
X

(i)
T+b

(x)− f
X

(j)
T+b

(x)
)2

dx, (2)

where f
X

(i)
T+b

(·) denotes the density function of the forecast X(i)
T+b, with T +b the prefixed

prediction horizon.
The distance D0

ij presents a serious drawback to perform cluster analysis. If the sets
{x : f

X
(i)
T+b

(x) > ε} and {x : f
X

(j)
T+b

(x) > ε}, are disjoints for an sufficiently small ε, then

D0
ij ≈

∫
f2

X
(i)
T+b

(x)dx+
∫
f2

X
(j)
T+b

(x)dx
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and D0
ij has a poor performance in the clustering task. For it, we propose using the

following distances D1
ij and D2

ij defined by

D1
ij =

∫ ∣∣∣fX(i)
T+b

(x)− f
X

(j)
T+b

(x)
∣∣∣ dx, (3)

and

D2
ij = E

(
X

(i)
T+b −X

(j)
T+b

)2

(4)

Direct computation of distances Du
ij , u = 1, 2, is not feasible in practice because the

forecast densities are unknown. To overcome this difficulty, distances Du
ij are consis-

tently approximated by replacing the unknown forecast densities by kernel-type density
estimates constructed on the basis of bootstrap predictions. In particular, we have con-
sidered a bootstrap procedure based on generating a process

X∗t = m̂g(XXX∗t−1) + ε∗t , (5)

where m̂g is a nonparametric estimator of m and {ε∗t } is a conditionally i.i.d. resample
from the nonparametric residuals. This bootstrap method, called autoregression boot-
strap, completely mimics the dependence structure of the underlying process.

A detailed description of the steps involved in generating a set of bootstrap predictions
is provided below.

Let (X1, . . . , XT ) be a partial realization from a process X(t) ∈ Ξ, i.e. X(t) admits
the representation given in (1). The resampling scheme proceeds as follows.

1. Estimate the autoregressive function m(·) using a modified Nadaraya-Watson esti-
mator with bandwidth g1.

2. Compute the nonparametric residuals, ε̂t = Xt − m̂g1(XXXt−1), t = d+ 1, . . . , T .

3. Construct a kernel estimate of the density function, fε̃, associated to the centered
residuals ε̃t = ε̂t − ε̂• with ε̂• the mean of the ε̂t.

Using the Rosenblatt-Parzen estimator with kernel H(u), we obtain f̂ε̃,h(u)

4. Draw a bootstrap-resample ε∗k of i.i.d. observations from f̂ε̃,h as follows

ε∗k = F̂−1
n (U) + hZ, k = 1, 2, 3, . . .

where U is a random value from uniform distribution U(0, 1) and Z is a random
value from a variable with density H(u).

5. Define the bootstrap series X∗t , t = 1, . . . , T , by the recursion

X∗t = m̂g1(XXX∗t−1) + ε∗t ,

where m̂g1 is defined in Step (2).

6. Estimate the bootstrap autoregressive function, m∗, on the basis of the bootstrap
sample (X∗1 , . . . , X

∗
T ) obtained in the previous step. Estimation is carried out using

again the modified Nadaraya-Watson estimator with bandwidth g2. The resulting
estimator is denoted by m̂∗g2 .
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7. Compute bootstrap prediction-paths by the recursion

X∗t = m̂∗g2(XXX∗t−1) + ε∗t ,

for t = T + 1, T + 2, . . . , T + b, b > 0, where T + b is the horizon pre-selected by
the user to carry out the clustering, and X∗t = Xt, for t ≤ T .

8. Repeat Steps (1)-(7) a large number (B) of times to obtain replications of the b-step
ahead bootstrap future observations.

Now, we come back to the clustering procedure. Applying the resampling method to
the ith time series in study, X(i), provides a bootstrap sample (X(i)∗1

T+b , X
(i)∗2
T+b , . . . , X

(i)∗B
T+b )

that allows us to estimate the unknown density of X(i)
t+b. In particular, we consider

the Rosenblatt-Parzen kernel smoother to obtain f̂
X

(i)∗
T+b

(x), the b-step-ahead density

estimator at point x for the ith time series, i = 1, . . . , s. Then, the L1−distance D1
ij can

be approximated by the “plug-in” version

D̂1∗
ij =

∫ ∣∣∣f̂X(i)∗
T+b

(x)− f̂
X

(j)∗
T+b

(x)
∣∣∣ dx, i, j = 1, . . . , s. (6)

Alternatively, the distance D2
ij can be approximated by

D̂2∗
ij =

1
B

B∑
t=1

(
X

(i)∗t
T+b

)2

+
1
B

B∑
t=1

(
X

(j)∗t
T+b

)2

− 2
B

B∑
t=1

X
(i)∗t
T+bX

(j)∗t
T+b , i, j = 1, . . . , s. (7)

Once the pairwise dissimilarity matrix D̂u∗ =
(
D̂u∗
ij

)
, u = 1, 2, is obtained, a stan-

dard clustering algorithm based on D̂u∗ is carried out. We consider an agglomerative
hierarchical clustering method.

In many cases, the time series are not stationary. In this case, each of the time
series is transformed using logarithms (if required) and taking an appropriate number
of regular differences. The bootstrap prediction-paths for the transformed series were
constructed following Steps (1)-(8). Then, the resulting bootstrap prediction-paths are
backtransformed to obtain the bootstrap predictions for the original series.

In this work, we establish the consistency of our dissimilarity measures under ap-
propriate conditions, and hence our clustering procedures asymptotically lead to the
clustering using the true generating process. A simulation study is carried out. The
results show the good behavior of our procedures for a wide variety of nonlinear autore-
gressive models and its robustness to non Gaussian innovations. Finally, the proposed
methodology is applied to a real data set involving economic time series. More specifi-
cally the dataset is formed by a collection of series representing the monthly industrial
production indices for European countries.
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On the estimation of the
density probability by
trigonometric series
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Abstract. We present in this paper an estimator based on a new orthogonal
trigonometric series. We give its statistical properties, the asymptotic prop-
erties and the rate of convergence of the mean integrated square error. The
comparison by simulation on a test density between the estimator obtained
from a new trigonometric system with Fejer estimator also based on orthogo-
nal trigonometric system, show that our estimator is more performant in the
sense of the mean integrated square error.

1 Introduction

The nonparametric probability density estimation by orthogonal series is a good alter-
native to the popular method of the kernel estimator of Parzen-Rosenblatt, when the
support of the densities to estimate is contained in a fixed compact interval of the real
line, since in this case convenient orthonormal systems are available, such as trigonomet-
ric basis. Density estimation using orthogonal functions is a topic which has received
considerable attention in the literature in recent years. Some notable examples include
work by Cencov [4], Kronmal and Tarter [7], [8], Wahba [9], Hall [5], [6] and Bosq [2].
Assume that h(t) is a continuous and strictly positive density function (with respect
to Lebesgue measure) over the compact interval I = [a, b] and suppose that {ek(t)}∞k=0

is a complete orthonormal basis for L2([a, b]). By assumption, the density h(t) can be
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represented in an orthogonal series expansion by

h(t) =
∞∑
k=0

akek(t), t ∈ [a, b], (1)

where

ak =
∫ b

a

ek(x)h(x)dx = E[ek(X)], k = 0, 1, 2 . . . . (2)

For convenience, suppose that
∑∞
k=0 akek(t) converges uniformly on [a, b] and each func-

tion ek(t) is continuous. Let X1, X2, . . . , Xn be independent, identically distributed ran-
dom variables having the common density h(t) on I = [a, b]. Since ak =

∫ b
a
ek(x)h(x)dx =

E[ek(X)], k = 0, 1, 2 . . . , it is clear that âk = 1
n

∑n
i=1 ek(Xi), is an unbiased estimator

of ak.
An estimate of h(t) is given by

ĥdn(t) =
dn∑
k=0

âkek(t), (3)

where, (dn) is a sequence of positive numbers chosen so that dn −→∞ when n −→∞.
The aim of this work is to introduce an estimator based on a new orthogonal trigonometric
series and give its statistical properties and the asymptotically properties. To justify
choice and quality means of the obtained estimator, one numerically compares it, on the
basis of integrated mean square error by simulation, with Fejer estimator also based on
orthogonal trigonometric series.

2 Estimator based on a new trigonometric series

Let X1, . . . , Xn be a sample of independent identically distributed random variables, each
with the common (unknown) probability density function h, over the compact interval
I = [−π, π]. An estimate of h(t) is given by

ĥdn(t) =
dn∑
k=0

âkek(t) , (4)

where the new trigonometric basis is the form

ek(t) =
1√
2π

(cos(kt) + sin(kt))1[−π,π](t), k = 0, 1, 2 . . . , (5)

âk =
1
n

n∑
i=1

ek(Xi) =
1√
2πn

n∑
i=1

(cos k(Xi) + sin k(Xi)) , (6)

and (dn) is a sequence of positive numbers chosen so that dn −→∞ when n −→∞.
The estimate ĥdn(t) of h(t) is then

ĥdn(t) =
1

4πn

n∑
i=1

[
sin[ (2dn+1)(Xi−t)

2 ]
sin[Xi−t2 ]

+
sin[ (2dn+1)(π2−(Xi+t))

2 ]

sin[
π
2−(Xi+t)

2 ]

]
. (7)
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Theorem 1 Assume that h(t) is square integrable and that the sequence of positive in-
tegers dn is chosen so that dn −→∞ as n −→∞. Then

MISE(ĥdn(t)) =
∫ π

−π
h2(t)dt+

dn + 1
2πn

+
1√
2πn

dn∑
k=0

β2k −
n+ 1
n

dn∑
k=0

a2
k. (8)

Theorem 2 If dn = o(
√
n)) and dn −→∞ as n −→∞, then

lim
n−→∞

V(ĥdn(t)) = 0.

Theorem 3 If dn = o(
√
n)) and dn −→∞ as n −→∞, then

lim
n−→∞

MSE(ĥdn(t)) = lim
n−→∞

E[ĥdn(t)− h(t)]2 = 0.

Theorem 4 If dn = o(
√
n) and dn −→∞ as n −→∞, then

lim
n−→∞

MISE(ĥdn(t)) = lim
n−→∞

E
∫ π

−π
[ĥdn(t)− h(t)]2dt = 0.

Theorem 5 If dn −→∞ as n −→∞, then

lim
n−→∞

P [ sup
t∈[−π,π]

| ĥdn(t)− h(t) |< ε] = 1, ∀ε > 0.

Theorem 6 If
∞∑

k=dn+1

a2
k = O(d−rn ), r > 0, (9)

and
dn = α log n, 0 < α < 1. (10)

Then,
MISE(ĥdn(t)) = O((log n)−δ), δ = min(1− α, r). (11)

3 Fejer estimator

Given a sample set X1, . . . , Xn of independent identically distributed random variables,
each with the common (unknown) probability density function h, over the compact in-
terval I = [a, b]. The estimator of h(t) is defined in [1] by

ĥdn(t) =
c0
2

+
dn∑
k=1

(1− k

dn + 1
)[ck cos(kz(t)) + sk sin(kz(t))], (12)

where

z(t) =
2π(t− a)
b− a

, c0 =
2

b− a
, ck =

c0
n

n∑
i=1

cos(kz(Xi)), sk =
c0
n

n∑
i=1

sin(kz(Xi)) (13)
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The mean integrated square error of Fejer estimator [1] is

MISE(ĥdn(t)) = c0

∫ b

a

h2(t)dt− c20
2

+
dn∑
k=1

(1− k

dn + 1
)2[Var(ck) + Var(sk)

− dn + 1 + k

dn + 1− k
(c2k + s2

k)] (14)

4 Selection of terms in an orthogonal series density
estimator

The performance and smoothness of the orthogonal series density estimate depend on
d: 0 < d ≤ dn, the number of terms in the series expansion. Kronmal and Tarter [7]
proposed a term by term optimal stopping rule for choosing d by minimizing an estimated
MISE criterion.
The rule adopted to determine the optimal value d∗ rests on the following algorithm.
From d = 1, one increases the value of d unit until MISE increases. We give to d∗ the
preceding value just before the increase of MISE. Then, we will add to sum (4) the dth

term if and only if

∆d = MISE(ĥd(t))−MISE(ĥd−1(t)) ≤ 0. (15)

We have

∆d = MISE(ĥd(t))−MISE(ĥd−1(t)) =
n+ 1
n

Var(ed(X))− E(e2
d(X))

Let us set θi = ed(Xi), i = 1, ..., n and θ = 1
n

∑n
i=1 θi. A symmetric unbiased estimator

of ∆d is defined in [3] by

∆̂d =
1
n

[
n+ 1
n− 1

n∑
i=1

(θi − θ)2 −
n∑
i=1

θ2
i

]
. (16)

Now, let us set a positive integer dn, the optimal d∗ is then of the form

d∗ =
{

inf{d : 1 ≤ d ≤ dn} if ∆̂d > 0
dn otherwise.

In the case of the estimator based on a new trigonometric series.

θi = ed(Xi) =
1√
2π

(cos(Xi) + sin(Xi)), i = 1, ..., n

and

θ =
1
n

n∑
i=1

(
1√
2π

(cos(Xi) + sin(Xi))
)
.

In the case of Fejer Estimator.
The unbiased estimate of ∆d is defined in [1] by

∆̂d =
1
n

[
c20 −

2nd+ n+ 1
n− 1

(nc2d + ns2
d − c20)

]
,

where c0, cd et sd are defined in (13).
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5 Simulation studies

To justify the quality of the new estimator, one carries out simulation studies for several
values of n on a test density: the normal N (0.85, 1). The numerical experimentation
will be useful for us to compare the performances of the new estimator with the Fejer
one, when comparing mean integrated square error of the two estimators. Results of
simulation are given in table 1, where

d∗NB : Optimal smoothing parameter associated to the new estimator;

d∗F : Optimal smoothing parameter associated to the Fejer estimator;

MISE∗NB : Optimal mean integrated square error associated to the new estimator;

MISE∗F : Optimal mean integrated square error associated to the Fejer estimator.

n d∗NB d∗F MISE∗
NB MISE∗

F

50 2 3 0.008532792 0.01244004
100 3 3 0.006326546 0.01033164
1000 3 3 0.004498078 0.008434078
1500 3 3 0.004371485 0.008363798
2500 3 3 0.004270211 0.008307574
3000 3 3 0.004244893 0.008293518
5000 3 3 0.004194256 0.008265406
7500 3 3 0.004168937 0.00825135
10000 3 3 0.004156278 0.008244321

Table 1: Optimal smoothing parameter and optimal MISE for the new and Fejer basis.

- The Kronmal Tarter method gives the same values of the smoothing parameter
when estimating the density either by the new basis or by the Fejer basis.

- The mean integrated square error values MISE∗NB associated to the new estimator
are always lower than the mean integrated square error values MISE∗F associated
to the Fejer estimator. What means that the new estimator is more performant
than that the Fejer one.

- The mean integrated square error associated to the new estimator decreases, when
increasing the sample size. However, it is noted that the convergence towards 0 is
very slow.
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Poster 2

Inference for a partly linear
autoregressive model with
moving average errors

Ana M. Bianco
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET

Graciela Boente
Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and CONICET

Abstract. In this talk, we generalize the partly linear autoregression model
considered in the literature by including moving average errors when we want
to allow a large dependence to the past observations. The strong ergodicity
of the process is derived. A Fisher–consistent procedure to estimate the
parametric and nonparametric components is provided together with a test
statistic that allows to check the presence of a moving average component.
Also, a Monte Carlo study is carried out to check the performance of the
given proposals.

Summary

When dealing with time series data, autoregressive models with moving average errors
(arma models) have been extensively used in applications. They correspond to linear
autoregressive models where the errors are described by a moving average process. More
precisely, an arma(p, q) model, is a stationary process {yt : t ≥ 1} verifying

yt =
p∑
j=1

ϕjyt−j + εt , (1)
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where εt = ut−
q∑
j=1

θjut−j with ut independent and identically distributed (i.i.d.) random

variables and ut is independent of {yt−j , j ≥ 1} with E|ut| <∞.
It is well known that, when there is large dependence to the past observations, arma

models have several advantages with respect to autoregressive models. However, the
assumption of a linear autoregression function is quite restrictive. As pointed by Bosq
(1996) a nonparametric predictor is “in general more efficient and more flexible than
the predictor based on Box and Jenkins method and nearly equivalent if the underlying
model is truly linear”, see also Carbon and Delecroix (1993) for a comparative study on
17 series. Nevertheless, the nonparametric autoregression model yt = m (Xt)+ut, where
Xt = (yt−1, . . . , yt−r)

t, faces the problem known as the “curse of dimensionality”. In
order to solve the problem of empty neighborhoods, an approach can be to introduce
moving average errors which reduce the dependence to the past in Xt obtaining, thus,
a smaller dimension r. This approach was followed by Boente and Fraiman (2002) who
introduced nonparametric arma models that allow the autoregressive part of the model
to be nonparametric, while the moving average part remains linear.

As noted by Gao and Yee (2000), another disadvantage of the fully nonparametric
autoregresive model is that it neglects a possible linear relationship between yt and any
lag yt−k . To solve the “curse of dimensionality”, following a semiparametric approach,
several authors have introduced partly linear models for autoregressive models in order
to combine the advantages of both parametric and nonparametric methods. A stochastic
process {yt}, defined over a probability space (Ω,A,P), satisfies a partly linear autore-
gressive model if it can be written as

yt =
p1∑
i=1

βo,iyt−ci +
p2∑
j=1

go,j(yt−dj ) + ut , (2)

where go,j : IR→ IR are smooth functions and ut are i.i.d. random variables, independent
of {yt−j , j ≥ 1}, Eut = 0 and Eu2

t <∞. However, these models do not take into account
a large dependence to the past unless p1 and p2 are large. To reduce the order of the
process, we can allow a dependence structure in the errors as in (1). Combining models
(1) and (2), one can consider a stationary process {yt : t ≥ 1} verifying

yt =
p1∑
i=1

βo,iyt−ci +
p2∑
j=1

go,j(yt−dj ) + εt , εt = ut −
q∑
j=1

θo,jut−j (3)

with ut i.i.d. random variables and ut independent of {yt−j , j ≥ 1}, E|ut| < ∞. From
now on, we will refer to a stochastic process verifying (3) as a partly linear arma(p1, p2, q)
model and it will be denoted by partliarma(p1, p2, q) model.

For simplicity and convenience, we will focus our attention on the case p1 = p2 = 1,
c1 = 1 d1 = 2, which leads to the partliarma(1, 1, q) model

yt = βoyt−1 + go(yt−2) + εt , εt = ut −
q∑
j=1

θo,jut−j (4)

with ut i.i.d. and ut independent of {yt−j , j ≥ 1}, E|ut| <∞.
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We provide sufficient conditions that allow to establish the strong ergodicity of the
process. Besides, we discuss several issues regarding how to define a Fisher–consistent
functional for go, βo and θo which allows to define estimators of parametric and non-
parametric components through an iterative procedure.

We present a statistic to test H0 : θ = (θ1, . . . , θq)t = 0, that is to check the presence
of a moving average component and we derive its asymptotic distribution.

Finally, we compare the performance of the given proposals through a Monte Carlo
study.
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Logistic and local logistic
distance-based regression
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Abstract. This paper introduces Logistic and Local Logistic Distance-Based
Regression. Only distances between individuals are required to fit these bi-
nary regression models. Therefore they are applicable to mixed (quantitative
and qualitative) explanatory variables or when the regressor is of functional
type.

1 Introduction

Boj, Delicado and Fortiana (2008) introduced a nonparametric regression technique (lo-
cal linear distance-based regression) as an application of the Weighted Distance-Based
Regression (DBR) presented there. In this paper we introduce other applications of the
same technique. In general, any statistical technique based on Weighted Least Squares
can be adapted to accept data given in the format of an inter-individual distances matrix,
just replacing any Weighted Least Squares step by the corresponding Weighted DBR.

There are many statistical techniques based on Iterative Reweighted Least Squares,
ranging from Generalized Linear Models fitting algorithms (McCullagh and Nelder 1989)
to Robust Regression estimation (see, for instance, Street, Carroll and Ruppert 1988).
All of them can be adapted to be used when the available information from covariates
is given by a distances matrix. Here we develop Logistic DBR in detail to illustrate how
this adaptation has to be done.

1Work supported by grant MTM2006-09920.
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Distance-Based Regression (DBR) was introduced by Cuadras and Arenas (1990).
Let Ω = {O1, . . . ,On} be a set of n objects (or individuals or cases) randomly drawn
from a population. For individual Oi we have observed the value yi of a continuous
one-dimensional response variable. A distance function δ (being a metric or semi-metric)
is defined between the elements of Ω, usually based on predictors Z observed for every
Oi ∈ Ω as zi. Let ∆ = (d2

i,j)i=1..n,j=1..n be the inter-individual squared distances matrix.
The available information Z for the elements of Ω can be a mixture of quantitative
and qualitative variables or, possibly, other nonstandard quantities, such as character
strings, functions or other kind of non-numerical explanatory variables. The aim of
the DBR is to predict the response variable for a new individual On+1 from the same
population, using (d2

n+1,1, . . . , d
2
n+1,n), the vector of squared distances from On+1 to the

remaining individuals, as the only available information. Boj, Delicado and Fortiana
(2008) introduce the weighted version of DBR, where each response yi has a weight
wi ≤ 0.

2 Logistic Distance-Based Regression

Let Ω = {O1, . . . ,On} be a set of n individuals (or cases) randomly drawn from a
population. For individual Oi we have observed yi, the value of a binary (0-1) response
variable. A distance function δ (being a metric or semi-metric) is defined between the
elements of Ω (possibly based on observed covariates Z). We assume that all the relevant
information on the relation between yi and other characteristics of individual Oi, i =
1, . . . , n, is summarized in the relation between the n vector y = (y1, . . . , yn) and the
n× n inter-individuals squared distances matrix ∆. Given a new individual On+1 from
the same population, our objective is to predict yn+1 using the squared distances from
On+1 to the remaining individuals, as the only available information.

Observe that we are facing up to a distance-based binary regression problem. To fit
such a model, we assume that the data are following a logistic model in the following
sense. Let the n× r matrix X be a Euclidean configuration of ∆, and let x′i be the i-th
row of X. Then we assume that yi is an observation of

Yi ∼ Bern(pi), logit(pi) = x′iβ,

for an unknown β ∈ Rr, where logit(p) = log(p/(1− p)). Observe that this assumption
does not depend of the particular choice of the Euclidean configuration X: let V be a
different r-dimensional Euclidean configuration of ∆, then V = X ·T , where T is a r×r
orthogonal matrix, and therefore

Xβ = (X · T · T ′)β = V γ,

and logit(pi) = x′iβ = v′iγ with γ = T ′β ∈ Rr. We conclude that only the relation
between y and ∆ determines whether the logistic model is adequate or not.

We propose an algorithm to compute the fitted values ŷ and the prediction yn+1 in
logistic regression model that not need explicit statement of the Euclidean configuration
X, that is, ŷ and ŷn+1 are independent of the particular choice of X. It is an adapta-
tion of the standard Reweighted Least Squares Algorithm used to fit standard logistic
regression (see, for instance, Section 13.7 in Wasserman 2004 or Appendix 14.A in Peña
2002).
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Algorithm for Logistic DBR.
Choose starting values p0 = (p0

1, . . . , p
0
n) (for instance, p0 can be the fitted

values of y given by a standard DBR if all the ŷi are in (0, 1)). Set s = 0 and
iterate the following steps until convergence.

1. Set
zsi = logit(psi ) +

yi − psi
psi (1− psi )

, i = 1, . . . , n.

2. Let the weight vector νs = (νs1 , . . . , ν
s
n)′ with νsi ∝ psi (1− psi ).

3. Fit the Weighted DBR (fitting equation for the Weighted DBR; see
Boj, Delicado and Fortiana 2008) using the squared distances matrix
∆, the response vector zs = (zs1, . . . , z

s
n), and the weight vector νs. Let

ẑs = (ẑs1, . . . , ẑ
s
n) the fitted values. Define

ps+1
i =

exp(ẑsi )
1 + exp(ẑsi )

and ps+1 = (ps+1
1 , . . . , ps+1

n ).

4. Set s = s+ 1 and go back to the step 1.

The fitted values ŷ are
ŷ = ps+1

where s is the last iteration of the algorithm, when convergence is achieved.
This algorithm allows us to give the prediction p̂n+1 of the expected response value

for a new individual On+1, with squared distances d[n+1] to the other individuals. In the
last iteration of the algorithm we use prediction equation for new cases in the Weighted
DBR (see Boj, Delicado and Fortiana 2008) to obtain the predicted value of z for the
new individual, ẑsn+1, and then we compute

p̂n+1 =
exp(ẑsn+1)

1 + exp(ẑsn+1)
.

Equations defining ŷ and p̂n+1 are the core of Logistic DBR.

2.1 Weighted Logistic Distance-Based Regression

The algorithm for Logistic DBR can be easily modified when original data have different
weight. Let w = (w1, . . . , wn)′ be these weights. Only two modifications are needed.
First, the initial values p0 can be obtained by Weighted DBR with weights w. Second,
in Step 2, the i-th element νsi of νs now must be proportional to wipsi (1−psi ), i = 1, . . . , n.

3 Local Logistic Distance-Based Regression

We consider again the framework stated in the previous section when Logistic DBR was
introduced. Our objective is now to fit a local Logistic DBR, where local refers to the fact
that when the Logistic DBR model is used to predict the value of the binary response
variable for an object On+1, we use only the information provided by observed objects Oi,
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i = 1, . . . , n, that are close to On+1, giving to Oi a weight that is a decreasing function of
the distance between Oi and On+1. The idea is to translate to the Logistic DBR context
the principles of local likelihood, as stated in Loader (1999). Our approach parallels that
used in Boj, Delicado and Fortiana (2008) when local linear DBR is defined.

Let m(On+1) the expected value of the binary response y corresponding to the object
On+1. This is the value we want to estimate and we do that by using Weighted Logistic
DBR. We assume that two distance functions, δ1 and δ2, are defined between the elements
of Ω (the set of observable objects). We consider the weights

wi(On+1) = K(δ1(On+1,Oi)/h)/
n∑
j=1

K(δ1(On+1,Oj)/h)

where h is an smoothing parameter (depending on n). Let ∆2 be the matrix of squared
distances between functions defined from δ2. We fit a Weighted Logistic DBR starting
from the initial elements

∆2 = (δ2(Oi,Oj)2)i=1...n,j=1...n, y = (yi)i=1...n, and w = (wi(On+1))i=1...n

as it is stated in Subsection 2.1. We consider the new individual On+1 and we compute
the squared distances from object On+1 to other individuals Oi:

δ2,n+1 = (δ2(On+1,O1)2, · · · , δ2(O,On)2).

Then we run the Algorithm for Logistic DBR that takes into account that observations
are weighted (Subsection 2.1) and the equation defining p̂n+1 is used to obtain the Local
Logistic DBR estimator of m(On+1):

m̂LLDBR(On+1) = ŷn+1.

There are two distance functions involved in the local logistic distance-based esti-
mation: one of them, δ1, is used to compute the weight of observed objects Oi around
the object On+1 where the response function is estimated, and the other, δ2, defines the
distances between observations for computing the Logistic DBR. The distances δ1 and
δ2 can coincide or not. In the context of local linear DBR Boj, Delicado and Fortiana
(2008) show that using two distance functions provides much more flexibility than using
only one (that is, δ1 = δ2).
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Abstract. A transformation kernel density estimator that is suitable for
heavy-tailed distributions is discussed. Using a truncated Beta transforma-
tion, the choice of the bandwidth parameter becomes straightforward. An
application to insurance data and the calculation of the value-at-risk are pre-
sented.

1 Introduction

This paper is about estimating the density function nonparametrically when data are
heavy-tailed like in many insurance applications. Other approaches are based on ex-
tremes, a subject that has received much attention in the economics literature. Embrechts
et al (1999), Coles (2001), Reiss and Thomas (2001) have treated extreme value theory
(EVT) in general. Chavez-Demoulin and Embrechts (2004), based on Chavez-Demoulin
and Davison (2005), have discussed smooth extremal models in insurance. Their focus
is devoted to highlight the nonparametric trends, as a time-dependence is present in
many catastrophic risk situations (such as storms or natural disasters) and in the finan-
cial marked. A recent work by Cooray and Ananda (2005) combine the lognormal and
the Pareto distribution and derive a distribution which has a suitable shape for small
claims and can handle heavy tails. Others have addressed this subject with the g-and-h
distribution, like Dutta and Perry (2006) for operation risk analysis.

We have analysed claim amounts in a one-dimensional setting and we have realized
that a nonparametric approach that accounts for the asymmetric nature of the density is

1The Spanish Ministry and /FEDER support SEJ2007-63298 is acknowledged.
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preferred for insurance loss distributions (Bolance et al. 2003, Buch-Larsen et al, 2005).
Moreover, we have applied the method on a liability data set and compared the nonpara-
metric kernel density estimation procedure to classical methods (Buch-Larsen, 2006).
Several authors (Clements et al., 2003) have devoted much interest to transformation
kernel density estimation, which was initially proposed by Wand et al. (1991) for asym-
metrical variables and based on the shifted power transformation family. Buch-Larsen
et al. (2005) proposed an alternative transformations based on a generalization of the
Champernowne distribution, simulation studies have shown that it is preferable to other
transformation density estimation approaches for distributions that are Pareto-like in the
tail. In the existing contributions, the choice of the bandwidth parameter in transfor-
mation kernel density estimation is still a problem. One way of undergoing bandwidth
choice is to implement the transformation approach so that transformation leads to a
beta distribution, then use existing theory to optimize bandwidth parameter choice on
beta distributed data and backtransform to the original scale. Our results are particu-
larly relevant for applications in insurance, where the claims amounts are analyzed and
usually small claims (low cost) coexist with only a few large claims (high cost).

Given a sample X1, ..., Xn of independent and identically distributed (iid) observa-
tions with density function fx, the classical kernel density estimator is:

f̂x (x) =
1
n

n∑
i=1

Kb (x−Xi) , (1)

where b is the bandwidth or smoothing parameter and Kb (t) = K (t/b) /b is the kernel
(see, Silverman, 1986 or Wand and Jones, 1995).

An error distance between the estimated density f̂x and the theoretical density fx that
has widely been used in the analysis of the optimal bandwidth b is the mean integrated
squared error (MISE). It has been shown (see, for example, Silverman, 1986, chapter
3) that the MISE is asymptotically equivalent to A−MISE:

1
4
b4 (k2)2

∫
{f ′′X (x)}2 dx+

1
nb

∫
K (t)2

dt, (2)

where k2 =
∫
t2K (t) dt. If the second derivative of fx exists (and we denote it by f ′′X),

then
∫
{f ′′x (x)}2 dx is a measure of the degree of smoothness because the smoother the

density, the smaller this integral is. From the expression for A −MISE it follows that
the smoother fx, the smaller the value of A−MISE.

Terrell and Scott (1985, Lemma 1) showed that Beta (3, 3) defined on the domain
(−1/2, 1/2) minimizes the functional

∫
{f ′′x (x)}2 dx within the set of beta densities with

same support. We assume that a transformation exists so that T (Xi) = Zi i = 1, ..., n
is assumed from a Uniform(0, 1) distribution. We can again transform the data so that
G−1 (Zi) = Yi i = 1, ..., n is a random sample from a random variable y with a Beta(3, 3)
distribution. In this work, we use a parametric transformation T (·), namely the modified
Champernowne cdf as proposed by Buch-Larsen et al. (2005) (KMCE method).

Let us define the kernel estimator of the density function for the transformed variable:

ĝ (y) =
1
n

n∑
i=1

Kb (y − Yi) , (3)
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KIBMCE
Empirical KMCE l = 0.99 l = 0.98

Young 1104 2912 1601 1716
Older 1000 1827 1119 1146

Table 1: Estimation of V aR (x,0.95), in thousands.

which should be as close as possible to a Beta(3, 3). We can obtain an exact value for
the bandwidth parameter that minimizes A−MISE of ĝ. Finally, in order to estimate
the density function of the original variable, since y = G−1 (z) = G−1 {T (x)}, the
transformation kernel density estimator is:

f̂x (x) = ĝ (y)
[
G−1 {T (x)}

]′
T ′ (x) . (4)

The estimator in (3) asymptotically minimizes MISE and the properties of the transfor-
mation kernel density estimation (4) are studied in Bolancé et al. (2008). Since we want
to avoid the difficulties of the estimator defined in (4), we will construct the transfor-
mation so that we avoid the extreme values of the beta distribution domain (KIBMCE
method).

2 Data study

In this section, we apply our estimation method to a data set that contains automobile
claim costs from a Spanish insurance company for accidents occurred in 1997. For small
costs, we see that the KIBMCE density in the mode is greater than for the KMCE
approach proposed by Buch-Larsen et al. (2005) both for young and older drivers. For
both methods, the tail in the estimated density of young policyholders is heavier than
the tail of the estimated density of older policyholders. This can be taken as evidence
that young drivers are more likely to claim a large amount than older drivers. The
KIBMCE method produces lighter tails than the KMCE methods. Based on the results
in the simulation study presented in Bolancé et al (2008), we believe that the KIBMCE
method improves the estimation of the density in the extreme claims class. Table 1 shows
the difference in risk measures.

3 Simulation study

This section presents a comparison of our inverse beta transformation method with the
results presented by Buch-Larsen, et al. (2005) based only on the modified Champer-
nowne distribution. Our objective is to show that the second transformation, that is
based on the inverse of a Beta distribution, improves density estimation. The simulation
results can be found in Table 1. For every simulated density and for sample sizes N = 100
and N = 1000, the results presented here correspond to the following error measures L1,
L2 and WISE for different values of the trimming parameter l = 0.99, 0.98. The bench-
mark results are labelled KMCE and they correspond to those presented in Buch-Larsen,
et al. (2005).
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In general, we can conclude that after a second transformation based on the inverse
of a certain Beta distribution cdf the error measures diminish with respect to the KMCE
method. In some situations the errors diminish quite substantially with respect to the
existing approaches. Note that the KMCE method was studied in Buch-Larsen, et al.
(2005) and the simulation study showed that it improved on the error measures for the
existing methodological approaches (Clements, et al., 2003 and Wand, et al., 1991).
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Poster 5

New multi-class and
directional clustering tests
based on nearest neighbor
contingency tables

Elvan Ceyhan
Department of Mathematics, Koç University, Sarıyer, 34450, Istanbul, Turkey

Abstract. Spatial interaction between two or more classes or species has
important implications in various fields and causes multivariate patterns such
as segregation or association. Segregation occurs when members of a class
or species are more likely to be found near members of the same class or
conspecifics; while association occurs when members of a class or species are
more likely to be found near members of another class or species. The null
case for both patterns is either all species or classes exhibit complete spatial
randomness (CSR) or random labeling (RL). The clustering tests based on
nearest neighbor contingency tables (NNCTs) that are in use in literature are
two-sided tests. In this article, I introduce new versions of clustering tests
for multiple classes and directional NNCT-tests for the two-class case. I use
three examples for illustrative purposes: Pielou’s Douglas-fir/penderosa pine
data, swamp tree data, and an artificial data set. I also provide guidelines
for using these NNCT-tests.
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Poster 6

Multivariate plug-in bandwidth
selection with unconstrained
pilot bandwidth matrices

J.E. Chacón
Departamento de Matemáticas. Universidad de Extremadura, Spain

T. Duong
Computational Imaging and Modeling Group. Institut Pasteur, Paris, France

Abstract. We propose the first plug-in bandwidth selector with uncon-
strained parametrizations of both the final and pilot bandwidth matrix. This
new selector shows the most improvement over the existing methods for target
densities whose structure is corrupted by pre-sphering.

1 Multivariate kernel density estimation

For a d-variate random sample X1,X2, . . . ,Xn drawn from a density f the kernel density
estimator is

f̂nH(x) = n−1
n∑
i=1

KH(x−Xi) (1)

where x = (x1, x2, . . . , xd)T and Xi = (Xi1, Xi2, . . . , Xid)T , i = 1, 2, . . . , n. Here K(x)
is the multivariate kernel, which we assume to be a spherically symmetric probability
density function having a finite second order moment, i.e. there exists m2(K) ∈ R such
that m2(K)Id =

∫
xxTK(x)dx, where Id is the d × d identity matrix. The parameter

H is the bandwidth matrix, which is symmetric and positive-definite; and KH(x) =
|H|−1/2K(H−1/2x).

In common with the majority of researchers in this field, we use the Mean Integrated
Squared Error (MISE) as our optimality criterion:

MISE(H) ≡ MISE
(
f̂nH

)
= E

∫ (
f̂nH − f(x)

)2

dx.
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The ideal MISE-optimal bandwidth selector is

HMISE = arg min
H∈F

MISE(H)

where F is the set of all symmetric and positive-definite d× d matrices.

2 Unconstrained plug-in bandwidth selection

Plug-in methods for choosing the bandwidth matrix rely on an asymptotic form of
the MISE, known as the AMISE. Wand (1992) shows that MISE(H) = AMISE(H) +
o(n−1|H|−1/2 + ‖vec H‖2), with

AMISE(H) = n−1|H|−1/2R(K) +
µ2(K)2

4
(vecT H)R(D⊗2f)(vec H). (2)

Here, vec A stands for the vector operator, respectively, applied to a symmetric matrix
vec A (see Wand and Jones, 1995) and if Hf = ∂2f/(∂x∂xT ) denotes the Hessian matrix
of f , we are writing D⊗2f = vec Hf . Besides, for a function g : Rd → Rp we introduce
the notation R(g) =

∫
g(x)g(x)T dx and we will omit the bold font if R(g) ∈ R (i.e.,

when p = 1).
To select the bandwidth matrix we must estimate the AMISE function first. In the

AMISE function the only unknown term is R(D⊗2f), so a plug-in procedure consists of
replacing this quantity with an estimator R(D⊗2f̂nG), where G is another bandwidth
matrix (called pilot bandwidth matrix) and then of selecting the plug-in matrix ĤPI as
the bandwidth minimizing

PI(H) = n−1|H|−1/2R(K) +
µ2(K)2

4
(vecT H)R(D⊗2f̂nG)(vec H)

But this raises the new problem of how to choose the pilot bandwidth G.
All the previous approaches, as Wand and Jones (1994) or Duong and Hazelton

(2003), put some constraints on the pilot bandwidth G to simplify both the computation
of the estimator and the study of its asymptotic properties. Moreover, to choose the
pilot bandwidth they need to pre-transform the data, and this pre-transformation may
cause troubles to the final estimator. Here we present the first plug-in bandwidth selector
which uses unconstrained bandwidth matrices at all stages of the plug-in methodology,
therefore not needing any pre-transformation of the data.

First, the estimator R(D⊗2f̂nG) can be explicitly computed by noting that

vec R(D⊗2f̂nG) = n−2
n∑

i,j=1

D⊗4LG(Xi −Xj),

where D⊗4LG denotes the vector containing all the partial derivatives of LG of order 4.
The mean square error of this estimator is defined as

MSE(G) = E‖vec R(D⊗2f̂nG)− vec R(D⊗2f)‖2,

with ‖ · ‖ standing for the Euclidean norm. Let us denote GAMSE the bandwidth matrix
that asymptotically minimizes MSE(G). The following result describes the order of this
optimal pilot bandwidth and that of the minimal MSE.
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Theorem 1 Under some smoothness assumptions, every entry of GAMSE is of order
n−2/(d+6) and the MSE obtained when this bandwidth matrix is used is of order n−4/(d+6).

When the pilot bandwidth matrix is of this precise of order, we also obtain the
convergence rate of the plug-in bandwidth selector.

Theorem 2 Under some smoothness assumptions, the relative rate of convergence of
ĤPI to HMISE is n−2/(d+6).

3 Simulations

In this section, we undertake a numerical simulation study to compare the finite sample
performance of the following selectors:

• Wand and Jones’s plug-in selector (1994) with individual pilot selectors parametri-
zed by G = g2Id; labelled WJ

• Duong and Hazelton’s plug-in selector (2003) with a single selector parametrized
by G = g2Id; labelled DH

• our proposed plug-in selector with unconstrained pilot selectors; labelled CD.

We consider samples of size n = 1000 for 500 simulation runs. For each simulation,
we compute the Integrated Squared Error (ISE) between the resulting kernel density
estimate and the target density.

The bivariate target densities which we consider are shown in Figure 1 and the ISE
boxplots are shown in Figure 2. A more exhaustive study is given in Chacón and Duong
(2008).
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Figure 1: Contour plots for the 3 target densities.

Two clear conclusions can be drawn:

1. For densities for which the use of pre-transformations do not represent a serious
handicap, namely #1 in this study, our selector performs as well as the other two.
In fact, all the three selectors have an entirely similar behaviour. This means that,
although our proposal is more general than the existing ones (because of the use
of an unconstrained pilot), it does not lose power against the other methods even
if we have a situation where a pilot bandwidth matrix with a single smoothing
parameter is appropriate.
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Figure 2: Box-plots for the ISEs of the plug-in methods WJ, DH and CD (from left to
right) and n = 1000.

2. However, if the density is such that the single-parameter parametrization of the
pilot bandwidth matrix is not suitable for the transformed data, then the plug-
in selector with unconstrained pilot bandwidth clearly outperforms the other two
methods. This occurs for densities #5 and #7 here.
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On nonparametric predictive
inference with incomplete data

Frank P.A. Coolen
Dept of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

Tahani A. Maturi
Dept of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

Abstract. Coolen (1998) introduced nonparametric predictive lower and
upper probabilities for m future Bernoulli random quantities, based on the
number of successes in n trials. We explore the generalization of this approach
if data are only available in the form of a set of values for the number of
successes.

1 Introduction

Statistical inference with incomplete data is important in many applications. The manner
in which inferential methods based on different foundations deal with incomplete data
differs substantially. Methods in which uncertainty is quantified by lower and upper
probabilities do not require any further assumptions on the incomplete data. Coolen
(1998) presented an inferential approach for Bernoulli quantities, which uses lower and
upper probabilities to quantify uncertainty. This approach, which fits in the more general
framework of ‘nonparametric predictive inference’ (NPI) (Coolen (2006)), only considers
events of the form ‘A is followed by B’, without any assumptions on the single events
A or B. NPI for Bernoulli quantities has been presented for events of the form ‘Y n1 =
s is followed by Y n+m

n+1 ∈ R’, with Y ji the number of successes in trials i to j, and
R ⊂ {0, 1, . . . ,m}. This raises the question how NPI for Bernoulli quantities deals
with incomplete information, in particular of the form Y n1 ∈ S ⊂ {0, 1, . . . , n}. This is
currently being investigated, initial insights are reported here. Explicit formulae, detailed
study of properties and a discussion of principles of such inferences, will be presented
elsewhere.
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2 NPI for Bernoulli random quantities

NPI for Bernoulli quantities (Coolen (1998)) defines direct predictive lower and upper
probabilities for future observations, based on available data. This fits in the wider frame-
work of NPI, with strong internal consistency and frequentist properties (Augustin and
Coolen (2004), Coolen (2006)). Suppose that we have a sequence of n+m exchangeable
Bernoulli trials, each with success and failure as possible outcomes, and data consisting
of n trials with s successes, with sufficient data representation Y n1 = s and interest in
Y n+m
n+1 . Let R = {r1, . . . , rt}, with 1 ≤ t ≤ m+1 and 0 ≤ r1 < r2 < . . . < rt ≤ m, and let(
s+r0
s

)
= 0. The NPI upper probability (Coolen (1998)) for the event Y n+m

n+1 ∈ R, given
data Y n1 = s, for s ∈ {0, . . . , n}, is

P (Y n+m
n+1 ∈ R|Y n1 = s)=

(
n+m

n

)−1 t∑
j=1

[(
s+ rj
s

)
−
(
s+ rj−1

s

)](
n− s+m− rj

n− s

)

The lower probability can be derived via the conjugacy property,

P (Y n+m
n+1 ∈ R|Y n1 = s) = 1− P (Y n+m

n+1 ∈ {0, 1, . . . ,m}\R|Y n1 = s)

In this approach, past observations are related to future random quantities via an as-
sumed underlying latent variable representation on the real line, with a threshold such
that all points to one side represent ‘successes’ and all to the other side represent ‘failures’.
No knowledge about this threshold is assumed (Thomas Bayes used a similar represen-
tation, but added a distributional assumption on the threshold - the prior distribution).
In NPI, with the latent variable representation, past observations are related to future
observations via Hill’s assumption A(n) (Hill (1968)). Suppose that the ordered values
of the latent variables corresponding to the n observations are u(1) < u(2) < . . . < u(n).
These n values define a partition of the real line, consisting of n + 1 intervals. Hill’s
A(n) states that a future random quantity Un+1 has equal probability 1/(n+ 1) to be in
each of these intervals. In NPI this Un+1 is the latent variable corresponding to the first
future observation, which will again be a success or failure, depending on which side of
the threshold Un+1 is.

When interested in m future observations (Coolen (1998)), the same assumption
needs to be made for each future observation consecutively, so one needs to assume
A(n), . . . , A(n+m−1). Under these assumptions, all

(
n+m
n

)
different orderings of the un-

derlying latent variables on the real line, which represent the first n observations and
the m future observations, have equal probability, also after information about the num-
ber of successes in the first n observations has become available. Denoting these

(
n+m
n

)
different orderings by Oj for j = 1, . . . ,

(
n+m
n

)
, the above lower and upper probabilities

are derived by counting orderings: for the lower probability, only those orderings are in-
cluded for which Y n1 = s must be followed by Y n+m

n+1 ∈ R, while for the upper probability
all orderings are included for which Y n1 = s can be followed by Y n+m

n+1 ∈ R. An example
of an application of NPI for Bernoulli quantities is comparison of proportions (Coolen
and Coolen-Schrijner (2007)).
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3 Incomplete data

We now explore the generalization of NPI for Bernoulli random quantities with incom-
plete data, assuming that the data information is Y n1 ∈ S ⊂ {0, 1, . . . , n}. It is important
to derive general expressions for the lower and upper probabilities for the events that
Y n1 ∈ S is followed by Y n+m

n+1 ∈ R, for any sets S and R. We explore this generaliza-
tion by discussing the derivation of such lower and upper probabilities and some of their
properties, and by a basic example.

We consider again the
(
n+m
n

)
different orderings Oj of the n + m latent variables,

which are all equally likely under the assumptions discussed above. The reasoning that
leads to the lower and upper probabilities for the event (Y n+m

n+1 ∈ R|Y n1 ∈ S) is the same
as before: The lower probability for this event is derived by counting all orderings Oj
for which Y n1 ∈ S must be followed by Y n+m

n+1 ∈ R, while the upper probability is derived
by counting all orderings Oj for which Y n1 ∈ S can be followed by Y n+m

n+1 ∈ R. It is
important to emphasize that, for the lower probability, Oj is only included in the count
if, for this particular Oj , for each s ∈ S, Y n1 = s must be followed by Y n+m

n+1 ∈ R, whereas
for the upper probability an Oj is already included if there is at least one s ∈ S for which
Y n1 = s can be followed by Y n+m

n+1 ∈ R. Hence, the actual events that correspond to the
lower and upper probabilities for (Y n+m

n+1 ∈ R|Y n1 ∈ S) differ substantially, in a way that
could be described as ‘most conservative’, and which also ensures that the conjugacy
property remains valid,

P (Y n+m
n+1 ∈ R|Y n1 ∈ S) = 1− P (Y n+m

n+1 ∈ {0, 1, . . . ,m}\R|Y n1 ∈ S)

Basic logic and set theory imply some important general properties for these lower and
upper probabilities. Let S1 ⊂ S2, then for all R,

P (Y n+m
n+1 ∈ R|Y n1 ∈ S1) ≥ P (Y n+m

n+1 ∈ R|Y n1 ∈ S2)

P (Y n+m
n+1 ∈ R|Y n1 ∈ S1) ≤ P (Y n+m

n+1 ∈ R|Y n1 ∈ S2)

For all R that are strict subsets of {0, 1, . . . ,m}, we have

P (Y n+m
n+1 ∈ R|Y n1 ∈ {0, 1, . . . , n}) = 0 and P (Y n+m

n+1 ∈ R|Y n1 ∈ {0, 1, . . . , n}) = 1,

reflecting that S = {0, 1, . . . , n} provides no information. For any given set S, the lower
and upper probabilities are increasing in R.

As mentioned before, the lower probability P (Y n+m
n+1 ∈ R|Y n1 ∈ S) and upper proba-

bility P (Y n+m
n+1 ∈ R|Y n1 ∈ S) are conservative, as is clear from the way they are derived.

They can be used without further assumptions about reasons for reporting S instead of
a specific unique value for Y n1 , which is in line with alternative approaches for dealing
with set-valued data in imprecise probability theory, but which cannot be achieved with
precise probabilities. An interesting case where such set-valued data naturally occur is
statistical quality control, if batches are accepted if at least a certain number of tested
products function satisfactorily; NPI methods for this are in development.
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4 Example

We consider n = 4 available observations and m = 2 future observations, so the un-
derlying assumed data representation has

(
6
2

)
= 15 different orderings of past and fu-

ture observations, each having probability 1/15 under the inferential assumptions in this
paper. Table 1 gives a variety of lower and upper probabilities, represented as pairs
(15P (Y 6

5 ∈ R|Y 4
1 ∈ S), 15P (Y 6

5 ∈ R|Y 4
1 ∈ S)).

×1/15 R = {0} {1} {2} {0, 1} {0, 2} {1, 2}
S = {0} (10, 15) (0, 5) (0, 1) (1, 15) (10, 15) (0, 5)

{1} (6, 10) (3, 8) (1, 3) (12, 14) (7, 12) (5, 9)
{2} (3, 6) (4, 9) (3, 6) (9, 12) (6, 11) (9, 12)
{3} (1, 3) (3, 8) (6, 10) (5, 9) (7, 12) (12, 14)
{4} (0, 1) (0, 5) (10, 15) (0, 5) (10, 15) (14, 15)
{1, 2} (3, 10) (2, 11) (1, 6) (9, 14) (4, 13) (5, 12)
{1, 3} (1, 10) (1, 12) (1, 10) (5, 14) (3, 14) (5, 14)
{2, 3} (1, 6) (2, 11) (3, 10) (5, 12) (4, 13) (9, 14)
{1, 2, 3} (1, 10) (1, 13) (1, 10) (5, 14) (2, 14) (5, 14)
{0, 1, 2, 3} (1, 15) (0, 14) (0, 10) (5, 15) (1, 15) (0, 14)
{1, 2, 3, 4} (0, 10) (0, 14) (1, 15) (0, 14) (1, 15) (5, 15)
{0, 1, 3, 4} (0, 15) (0, 14) (0, 15) (0, 15) (1, 15) (0, 15)

Table 1: NPI lower and upper probabilities (×15), n = 4 and m = 2.

The case S = {0, 1, 3, 4} only leads to non-trivial lower and upper probabilities for
two sets R (due to conjugacy), which is due only to the specific ordering of the 4 past
and 2 future observations in which the latter two are in between the second and third
ordered past observation, in the underlying assumed data representation. for that specific
ordering none of the values in this S can be followed by precisely one future success, for all
other orderings this is possible for at least one of the values in S. These results illustrate
clearly the decreasing (increasing) nature of the lower (upper) probabilities if S becomes
larger. Imprecision is pretty large, which is due to the specific manner in which the lower
and upper probabilities are derived, and their conservative nature, yet it should not be
too surprising. For example, if one gets information that, out of 4 trials, the number of
successes was either 1 or 3, clearly this information does not reveal much, in particular
if one has no idea why this specific information was given. Most remarkable, perhaps,
are some of these inferences for R = {1}. For example, when one compares the values
corresponding to S = {1}, S = {3} and S = {1, 3}, one might perhaps be surprised that,
for the latter case, the lower and upper probabilities are not also equal to 3/15 and 8/15,
respectively. This is a feature of the NPI approach where it differs fundamentally from
other approaches. Such behaviour of these NPI lower and upper probabilities as function
of S are currently being studied in more detail.
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Robust nonparametric
estimation for functional data:
Lp errors and applications
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Ali Laksaci
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Abstract. Recently, robust estimators have been considered in regression
models where the covariate is functional. Almost sure convergence and asymp-
totic normality results have been obtained. From this asymptotic normality
result together with uniform integrability conditions, the asymptotic expres-
sions of Lp errors of such estimators can be obtained.

1 Introduction

In many practical situations, one is faced to functional-type phenomena. It is now pos-
sible to take into account their functional nature thanks to technological improvements
that allow to collect data discretized on thinner grids. Functional Statistics is an impor-
tant topic of modern statistics (see [16], [17], [4], and [11] for a review). In this talk,
we consider the issue of predicting the value of a real variable of interest from the ob-
servation of a functional explanatory variable (i.e. a random variable taking values in a
semimetric space (E , d)). one often considers a regression model of the form

Y = r (X) + ε
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and want to estimate the value of the regression operator r at a point x of E that
corresponds to the conditional mean of Y given X = x. Kernel methods have been
used to make its estimation in nonparametric functional regression models (see [11] for
a review). However, in presence of outliers it may be more relevant to consider robust
estimators. In the classical case where the explanatory variable is multivariate, the robust
methods has been considered by many authors (see for instance, [15], [7], [3], and [14]
for recent references) following the pioneer work [13]. In the more general case where
the explanatory variable is functional, there are few results (see [5], [6], [12], [8], [10]).
Recently, [2] have obtained the almost complete convergence of robust estimators based
on kernel methods. In the same context, [1] have considered the asymptotic normality
of these estimators.

The aim of this talk is to present these robust estimators and complete the existing
literature. We quickly recall the asymptotic normality given by [1]. Then we explain
how a uniform integrability result can be used to derive from this result the explicit
expression of the Lp errors of these robust estimators (extending the work of [9]). We
conclude our talk with the application of robust methods in the study of time series or
curve discrimination.

2 The Model

One focuses in this talk on the way a real-valued variable of interest Y depends on a
variable X that takes values in a semimetric space (E , d). In this work we are interested
in estimating a function θ : x 7→ θx, where for each x ∈ E , θx is defined as the solution
(with respect to t), assumed to be unique, of the following equation:

Ψ(x, t) := E [ψx (Y, t) |X = x] = 0, (1)

where ψx is a known function chosen by the statistician. The function Ψ (x, t) is unknown.
We propose to consider the following kernel estimator of Ψ (x, t) constructed from a
dataset of n pairs (Xi, Yi)1≤i≤n identically distributed as (X,Y ):

Ψ̂(x, t) =
∑n
i=1K

(
h−1d(x,Xi)

)
ψx (Yi, t)∑n

i=1K (h−1d(x,Xi))
, ∀t ∈ R, (2)

where K is a kernel and h = hn is a sequence smoothing parameters. Then, a natural
estimator of θx is θ̂n = θ̂n(x) that is the solution of the empiral equation:

Ψ̂(x, θ̂n) = 0. (3)

3 Asymptotic results

3.1 Convergence in probability and asymptotic normality

The results we recall in the present section have been obtained by [1] for independent
datasets:

θ̂n − θx
P−−−−−→

n→+∞
0.

and
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(
nF (hn)
Vn(x)

)1/2 (
θ̂n − θx −Bn(x)

)
L−−−−−→

n→+∞
N (0, 1) ,

with explicit expressions for Vn(x) and Bn(x).

3.2 A uniform integrability result

We now state a uniform integrability result that will be used together with previous
asymptotic normality result to get the explicit expression of dominant terms in Lp errors.
This result has been obtained for arithmetically α-mixing pairs (Xi, Yi). We introduce
the quantities

F (h) = P (d(X,x) ≤ h) ,

known in the litterature as the small balls probabilities. Under some hypotheses, for
0 ≤ q < k, (k has an explicit expression not given here) we show that the quantity

∣∣∣√nF (hn) (Ψn(x, t)− E [Ψn(x, t)])
∣∣∣q ,

is uniformly integrable, where Ψn(x, t) =
1

nF (hn)

n∑
i=1

K
(
h−1d(x,Xi)

)
ψx (Yi, t).

3.3 Moments convergence

We now can obtain the convergence of the moments of ˆthetan − θx from the asymptotic
normality of our estimators and the uniform integrability result given in the previous
paragraph. We have, for all q < q′ (we have an explicit definition of q′, not given here)

E
[∣∣∣θ̂n − θx∣∣∣q] = E

∣∣∣∣∣Bn(x) +

√
Vn(x)
nF (hn)

W

∣∣∣∣∣
q
+ o

(
1√

nF (hn)
q

)
.

From the explicit expressions of Bn(x) and Vn(x) given in [1] one can derive a more
explicit expression of these Lp errors following the same approach as in [9]. The previous
result give a Lp convergence result for general robust estimators and opens interesting
prospects with respect to the choice of the smoothing parameter.

4 Applications

We will quickly illustrate the usefulness of robust estimators in an application example
concerning the prediction of energetic cunsumption during one year from the values
collected the previous years (see Figure 1).
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Figure 1: Prediction of the total petroleum consumption for electricity generation by a
robust approach.
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Additive models for testing
separability
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Abstract. We propose a testing technique for assessing separability of
spatio-temporal processes. Our approach is based on the representation of the
log-periodogram as the response variable in a regression model. Within this
context, separability can be interpreted as additivity in spatial and temporal
frequency components. We also provide some simulation results comparing
the performance of the test with a marginal integration and a Backfitting
approach. The testing method is also applied to a real-data case.

1 Introduction

In order to describe the behaviour of spatio-temporal processes, a model for the depen-
dence structure must be assessed. Since the direct extension of spatial covariance models
to the spatio-temporal situation may not be adequate, a great effort has been made in
order to obtain new dependence models that allow for space-time interactions (see, for
instance, Cressie and Huang (1999)). However, if the spatial and temporal components
in the variability of the process are proved to be independent, inference becomes simpler.
This situation is known as separability.

1The authors acknowledge the support of Ministerio de Educación y Ciencia project MTM2005-00820
and Xunta de Galicia project PGIDIT06PXIB207009PR.

2R. Fernández-Casal acknowledge the support of Xunta de Galicia Project PGIDIT05TIC00701CT.
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Let Z(s, t) denote a zero-mean second-order stationary spatio-temporal process, ob-
served at spatial locations on a regular grid s ∈ D = {1, . . . , n1}×{1, . . . , n2}, N = n1n2

and at time moments t ∈ {1, . . . , T}. The spatio-temporal covariance function associated
with Z is defined as C(u, v) = cov(Z(s+u, t+v), Z(s, t)), (u, v), (s, t) ∈ R3. Assuming
that

∫
R2

∫
R
C(u, v)dvdu < ∞, by Khinchin’s theorem, the covariance function can be

written as:

C(u, v) =
∫

Π2

∫
Π

ei(u,v)′(λ,ω)f(λ, ω)dλdω, Π = [−π, π],Π2 = [−π, π]× [−π, π],

where ′ denotes the transpose operator, f(λ, ω) is the spectral density and λ and ω denote
the frequencies associated with the spatial and the temporal components. Under the sep-
arability assumption, the covariance can be decomposed as the tensor product of a spatial
and a temporal covariances, namely CS and CT , such that C(u, v) = CS(u)CT (v). There-
fore, the spectral density can be also written in this way, considering the corresponding
spatial and temporal spectral densities fS and fT , that is: f(λ, ω) = fS(λ)fT (ω). The
most well-known nonparametric estimator of the spectral density is the periodogram,
which is given by:

I(λk, ωk) =
1

(2π)3NT

∣∣∣∣∣∣
∑
(s,t)

Z(s, t)e−i(s,t)
′(λk,ωk)

∣∣∣∣∣∣
2

, k = (k1, k2)

and it is usually evaluated at the Fourier frequencies (λk, ωk) ∈ Π2 × Π, (λk, ωk) =(
2πk1
n1

, 2πk2
n2

, 2πk
T

)
, ki = 0,±1, . . . ,±bni−1

2 c, i = 1, 2 k = 0,±1, . . .± bT−1
2 c. For a wide

class of processes, in particular for Gaussian stationary processes, the periodogram can
be obtained as the response variable in a multiplicative regression model:

I(λk, ωk) = f(λk, ωk)Vk,k +R(λk, ωk),

where Vk,k are i.i.d. standard exponential random variables and the remainder term
R(λk, ωk) can be uniformly bounded. Taking logarithms, the log-periodogram at (λk, ωk),
denoted by Yk,k is given by:

Yk,k = m(λk, ωk) + zk,k + rk,k, (1)

where zk,k are i.i.d. Gumbel(0,1) distributed, m = log f and rk,k is asymptotically
negligible.

2 The test

Considering the logarithm of the spectral density m, under the assumption of separability,
this function is given by the sum of the spatial and temporal log-spectral densities:
m(λ, ω) = mS(λ) + mT (ω). Then, the problem of assessing a separable covariance can
be formulated in terms of the log-spectral density as:

H0 : m = mS +mT , vs. Ha : m 6= mS +mT .

From expression (1), the testing problem can be viewed as a test for additivity in a
regression model, but regarding the particular features of the remainders zk,k and rk,k.
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The two most popular methods for the estimation of an additive regression function
are the Backfitting algorithm and the marginal integration estimator. In Dette et al.
(2005), the authors revise four different test statistics, based on the marginal integration
approach for estimation, in order to assess additivity. We consider an L2-distance test
statistic:

Q =
1
NT

∑
k,k

(m̂(λk, ωk)− m̂0(λk, ωk))2
, (2)

where m̂ is given by m̂(λ, ω) = 1
NT

∑
k,kKST,G((λk, ωk)− (λ, ω))Yk,k, G ∈M3×3, with

kernel KST and bandwidth matrix G and m̂0(λ, ω) = m̂S(λ) + m̂T (ω) + ĉ, where ĉ = Y .
Classical marginal integration estimation is applied for the spatial and temporal compo-
nents in the frequency domain. Under some regularity conditions, the asymptotic normal
behaviour of this test statistic can be obtained following Dette et al. (2005).

However, a large sample size is needed for an accurate performance of the asymptotic
distribution, which may not be the case in a real situation. Therefore, we propose
an algorithm in order to apply this test in practice, which allows also to compare the
behaviour of Backfitting vs. marginal integration in this particular setting:

Step 1. Compute m̂I and compute m̂I
0 using the marginal integration estimator or the

Backfitting algorithm.

Step 2. Compute the observed test statistic Qobs.

Step 3. Draw a random sample of the process Z applying the Inverse Fourier Transform to
e

cmI0(λk,ωk) and obtain Ĉ(u, v), for u ∈ {1−n1, . . . , n1− 1}, v ∈ {1− T, . . . , T − 1}.
Obtain a realization of the process in a grid {1, . . . , n1} × {1, . . . , n2} × {1, . . . , T}
based on Ĉ.

Step 4. Obtain the test statistic for this generated sample, Qb.

Step 5. Repeat steps 3 and 4 and get Q1, . . . , QB . Approximate the p-value of the test
statistic as the percentage of bootstrap replicates that exceed the observed value
Qobs.

Consider the following spatio-temporal (spatially isotropic) covariance model:

C(u, v) = σ2 exp
(
−3
a

(
β
√
‖u‖2 + bv2 + (1− β)(‖u‖+ b|v|)

))
,

where σ2 denotes the sill, a is the practical range and b is a spatial-temporal scale pa-
rameter. β = 0 corresponds with a separable model, whereas β = 1 is a geometrically
anisotropic non-separable model. Results of the algorithm for 21× 21 observations of a
Gaussian process can be seen in Table 1. In all cases, the behaviour of the test under the
null hypothesis of separability is good. However, the test with Backfitting presents less
power than the one with marginal integration in distinguishing from separability. We
have run more simulations with larger sample sizes, obtaining better results in terms of
power, but the same conclusions about BF against CMIE. Our methods has been also
compared with the one proposed by Scaccia and Martin (2005) for lattice processes, with
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Method β = 0.0 β = 0.25 β = 0.50 β = 0.75 β = 1.00

α = 0.01

CMIE 0.016 0.025 0.058 0.130 0.316
BF 0.006 0.012 0.028 0.075 0.187
SM 0.013 0.016 0.065 0.075 0.171

α = 0.05

CMIE 0.060 0.085 0.147 0.270 0.494
BF 0.046 0.061 0.103 0.192 0.379
SM 0.052 0.079 0.102 0.188 0.331

α = 0.10

CMIE 0.105 0.146 0.222 0.374 0.608
BF 0.093 0.117 0.178 0.276 0.496
SM 0.112 0.133 0.173 0.253 0.458

Table 1: Percentage of rejections for Q with marginal integration estimation (CMIE),
Backfitting (BF) and Scaccia and Martin’s test (SM) for different β. Significance levels:
α = 0.01, α = 0.05 and α = 0.10. Grid size: 21× 21, a = 5, σ2 = 1 and b = 1.

Figure 1: Estimated surfaces of the log-spectral density for temporal frequency 0. Left
plot: m̂(λk, 0). Right plot: m̂0(λk, 0) (under separability).
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better results.

The method has been also applied to the wind-speed data studied in Cressie and
Huang (1999). The observed value for the test statistic was 41681.74 and the p-value
approximation (using the previous algorithm with marginal integration) was p < 0.001.
The non-separability of this data set has been also assessed by other authors. This result
is not surprising, given that the difference between the estimations under the null and
the alternative hypothesis is quite relevant (see Figure 1).
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functional times series
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Abstract. We study a kernel estimator of conditional quantiles of a scalar re-
sponse variable given a random variable taking values in a semi-metric space.
Asymptotic behavior of the estimate are obtained. We apply this estimation
to functional times series prediction problem, to construction of confidence
prediction bands and determination of conditional confidence bands. A real
data application where we are interested in forecasting hourly ozone concen-
tration is considered.

1 Introduction

Let us introduce n pairs of random variables (Xi, Yi)i=1,...,n that we suppose drawn from
the pair (X,Y ), valued in F × R, where F is a semi-metric space. Let d denotes the
semi-metric. Assume that there exists a regular version of the conditional probability of
Y given X that is absolutely continuous with respect to Lebesgue measure on R and has
a bounded density. For x ∈ F , we will denote the conditional cumulative distribution
function, (cdf.) of Y given X = x by F x and by fx the conditional density of Y given
X = x.
Let α ∈]0, 1[, the αth conditional quantile noted tα(x) is defined by

F x(tα(x)) = α.
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To insure existence and unicity of tα(x), we assume that F x is strictly increasing. This
last is estimated by

F̂ x(y) =


∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1K(h−1
K d(x,Xi))

if
∑n
i=1K(h−1

K d(x,Xi)) 6= 0

0 otherwise ,

(1)

where K is a kernel, H is a cdf and hK = hK,n (resp. hH = hH,n) is a sequence of
positive real numbers.
Because of the definition of tα(x), the kernel estimate of this conditional quantile is
related to the conditional distribution estimator (1). Then, a natural estimator of tα(x)
is defined by:

F̂ x(t̂α(x)) = α. (2)

An estimate similar to F̂ x(y) has been introduced in the special case where X is a
real random variable by Roussas (1969). This last work has been extended in different
ways by many authors in univariate or multivariate cases. See Gannoun et al. (2003),
Yu et al. (2003) for recent advances and more exhaustive list of references.
The main goal of this paper is to study the nonparametric estimation of quantile re-
gression when the explanatory variable is functional. The nonparametric study of the
conditional quantile estimation is relatively restricted if the explanatory variable is func-
tional, see Ferraty et al. (2006), Ferraty and Vieu (2006), Ezzahrioui and Ould-said
(2006a, 2006b), Dabo-Niang & Laksaci (2006).
We are interested in nonparametric estimation of the conditional quantile when the
data are dependent and of functional nature. Our nonparametric model is quite general
compare with those of Ezzahrioui & al. (2006a, 2006b) and Ferraty & Vieu (2006) in
the sense that we use less restrictive assumptions. We prove under general conditions,
the Lp-norm convergence (with rates) and we establish the asymptotic normality of the
kernel estimator t̂α(x).

Our results are applied to build predictive intervals, confidence intervals. The most
important application of our results is the prediction of a real characteristic of a func-
tional variable. A particular case of functional data is when observations come from
a continuous time series. Let (Zt)t∈[0,b[ be a random real valued continuous time pro-
cess. From Zt we construct: N functional random variables (Xi)i=1,...,N defined by:
∀t ∈ [0, b[, Xi(t) = ZN−1((i−1)b+t) and a real characteristic Yi = G(Xi+1). Our goal
is to predict YN given the whole past (Xi, Yi)i=1,...,N−1 and XN . To this aim, we use
an alternative approach to regression method: that is the conditional median estimate
ŶN = t̂0.5(XN ) which gives also an approximation (derived from asymptotic normality
result) of an 1 − η confidence interval Iη of YN . This confidence interval Iη can also be
approximated by using a predictive interval, based on estimated quantiles of order η/2
and 1− η/2.

Finally, our model has been implemented and applied to some environmentally data.
These data concern ozone concentration and are collected around the city of “Le Casset”
in the south-est of France, defined by the geographical coordinates (45◦ 00’N, 06◦ 28’E).
The data are hourly ozone measurements from January to December 2003. We are
interested in the prediction of this ozone concentration one day ahead.

The obtained predicted values (Ŷ 1
363, . . . , Ŷ

15
363) corresponds to the hourly ozone con-

centration prediction of the last day of December 2003, between 6h AM to 8h PM. The
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Figure 1: Hourly ozone concentration of year 2003.
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Figure 2: Prediction by the conditional quantiles.

results are given in Fig.2, where we draw two curves corresponding to the observed values
(dashed curve) and the predicted values (solid curve). Clearly, Fig. 2 shows the global
good behavior of our functional forecasting procedure.
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Abstract. In this paper, we propose a new approach to conditional quantile
function estimation that combine both parametric and nonparametric tech-
niques. The new quantile regression estimator behaves like a parametric one
when this latter is correct and converges to the nonparametric solution as the
parametric start deviates from the true underlying model.

1 Introduction

Unlike parametric techniques, nonparametric kernel smoothing are well known flexible
methods that can be used without making restrictive assumptions about the form of the
unknown target function. In general, their performances depend on the smoothness of
the regression function, the sample size n, the selected kernel K (typically a symmetric
density function), and the bandwidth hn that describes the degree of smoothing applied
to the data. Many kernel smoothers, such as Nadarya-Watson, local linear and nearest
neighbour, share the same form for the asymptotic mean squared error (MSE), namely
(h2a)2 + (nh)−1b, where the first term is the squared asymptotic bias and the second
term is the asymptotic variance. The quantities a and b depend on the unknown data
generating procedure and on the chosen kernel but neither on n nor on hn. From this
formula it is clear that, for a fixed n, one can reduce the bias just by choosing a small
bandwidth (0 < hn → 0) however, this will inevitably increase the variance of the esti-
mator. In the literature, there are at least two approaches that have been proposed in
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order to reduce the bias without increasing the instability of the resulting estimator. The
first one, aims at improving the bias rate from O(h2) to O(h4) by using, for example,
higher-order kernels or variable kernel methods. As noted by Jones and Signorini (1997)
in the context of density estimation, the merit of such an approach is not clear for finite
(small to moderate) sample size. The second approach, that will be used here, attempts
to remove the bias asymptotically by acting only on the leading constant term a without
changing the variance of the estimator. This is particularly interesting since the decrease
of the bias allows to increase the bandwidth, and therefore to use more data in the local
fit which will be beneficial also for reducing the variance. To achieve that goal, one of the
most used techniques is to guide the nonparametric regression function by a parametric
pilot estimate. See Einsporn (1987), Fan and Ullah (1999), Mays et al. (2001), and
Hagmann and Scaillet (2007) for more details.
The literature cited above focuses on the mean regression or density estimation. How-
ever, to the best of our knowledge, except for the recent work of Su and Ullah (2007),
there is no available literature about such technique in the context of quantile regression.
Su and Ullah (2007) propose a double smoothing estimator where a local linear primary
fit is multiplicatively adjusted by a another local linear fit. Our approach and motiva-
tions here are completely different. We are particularly interested in the case where a
naive parametric estimator (that may be completely misspecified) is available but either
fails to fit adequately the observed data or casts some doubts about its accuracy and
efficacy. The parametric estimator is then corrected additively through a p’th order lo-
cal polynomial quantile regressor. This considerations yield a consistent and substantial
better estimate of the underlying conditional quantile function and its derivatives with
a single bandwidth. The latter not only controls the local window size, as it is the case
for the classical kernel methods, but also locally adapts to the global parametric model.
Another advantage of the proposed method is that our estimator can be seen as a gener-
alization of the classical local polynomial fit. It shares with the well known local linear
smoother (p = 1) some good properties such as small boundary effects, adaptive design,
and high minimax efficiency. However, it has typically a smaller mean squared error and
a faster rate of convergence. In this paper, we give a Bahadur-type representation of the
proposed estimator from which consistency and asymptotic normality are derived under
α-mixing assumption. We also discuss the numerical implementation and investigate the
performance of the estimator via some simulations. Finally, we propose and numerically
study a practical bandwidth selector based on the plug-in principle.

2 The procedure

The objective function is given by Qπ(x) = arg mina Ex (ϕπ(Y − a)). The local polyno-
mial (LP) estimator β̂ = (β̂0, . . . , β̂p)T is defined by

arg min
b

n∑
i=1

ϕπ(Yi − X̃T
i b)Kh,i, (1)

where X̃i = (1, Xi−x, . . . , (Xi−x)p)T and Kh,i = K((Xi−x)/h), with K being a kernel
function.
To motivate our approach, let assume that instead of Qπ(x), we are interested in Qπ(x)−
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q(x) ≡ arg mina Ex (ϕπ(Y − q(X)− a)), for some given function q. One can first esti-
mate Qπ and then subtract from it q or directly search the argument that minimizes∑n
i=1 ϕπ(Yi − q(Xi)− X̃T

i b)Kh,i with respect to b ∈ Rp+1. An obvious way to get back
to Qπ(x) is by minimizing

∑n
i=1 ϕπ(Yi − (q(Xi) − q(x)) − X̃T

i b)Kh,i. It can be shown
that this is a valid estimator for Qπ(x) and its derivatives up to the p’th order. However,
for reasons that will become clear later, here we suggest to replace in the last equation
q(Xi) − q(x) by rq(Xi) := q(Xi) −

∑p
j=0

q(j)(x)
j! (Xi − x)j , provided that q(p)(x) exists.

This consideration leads to a new class of local polynomial semiparametric estimators
given by

arg min
b

n∑
i=1

ϕπ(Yi − ri(θ̂)− X̃T
i b)Kh,i, (2)

ri(θ̂) ≡ rXi(θ̂), with rx(θ) being a shortcut for rqθ (x), qθ(x) ≡ qπ(x, θ) being a parametric
model for Qπ(x) and θ̂ = arg minθ∈Θ n

−1
∑n
i=1 ϕπ(Yi − qθ(Xi)).

3 Asymptotic theory

Under very weak assumptions, see Komunjer (2005), θ̂ converges in probability to θ∗ =
arg minθ∈Θ E (ϕπ (Y − qθ(X))) . The latter parameter is the best possible value of θ ∈ Θ
with respect to the “distance” ϕπ. We assume that θ̂ − θ∗ = Op(δn) with δn → 0.

Theorem 1 (Bahadur-type representation) Under some regularity assumptions,

Hn(β̂ − β)− hp+1

(p+ 1)!
Λ−1u[Q(p+1)

π (x)− q(p+1)
π (x, θ∗)]

=
a2
n

f(x,Qπ(x))
Λ−1

n∑
t=1

etX̃h,tKh,t + rn,

where et = π − I(Yt < Qπ(Xt)), X̃ht = (1, (Xt − x)/h, . . . , ((Xt − x)/h)p)T , Hn =
diag(1, h, . . . , hp) and rn = op(an) + hp+1

n (Op(δn) + op(1)), with a−1
n =

√
nhn. f(x, y) is

the density of (X,Y ). The matrix Λ and the vector u depend only on the kernel K

Theorem 2 (Asymptotic normality) Under some regularity assumptions,

√
nhn

{
Hn(β̂ − β)− hp+1

(p+ 1)!
Λ−1u[Q(p+1)

π (x)− q(p+1)
π (x, θ∗)] + hp+1

n (Op(δn) + op(1))
}

L−→ N
(
0, σ2

π(x)Σ
)
,

where σ2
π(x) =

π(1− π)
f2
x(Qπ(x))f0(x)

. Σ is a matrix that depent only on K, fx(y) and f0 are

the density of Y |X and the density of X respectivally.
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Model M1 Model M2
102× 102× 102× 102× 102× 102×

Method Bias2 Var MSE RE% Bias2 Var MSE RE%
λ = 0 LL 1.839 10.07 11.91 47.24 1.839 10.07 11.91 47.24

PQ1 0.003 5.624 5.627 100.0 0.003 5.624 5.627 100.0
GLL1 0.006 5.817 5.823 96.64 0.006 5.817 5.823 96.64
PQ2 0.003 5.672 5.675 99.15 0.003 5.672 5.675 99.15
GLL2 0.005 6.050 6.055 92.93 0.005 6.050 6.055 92.93

λ = 2 LL 2.920 10.30 13.22 70.24 2.396 11.42 13.82 81.14
PQ1 9.049 6.239 15.29 60.75 25.77 9.415 35.18 31.87
GLL1 1.077 8.210 9.287 100.0 1.695 9.518 11.21 100.0
PQ2 2.444 11.56 14.00 66.32 4.461 15.85 20.31 55.22
GLL2 0.439 10.30 10.73 86.52 0.355 11.05 11.40 98.32

λ = 10 LL 2.611 15.15 17.76 87.49 3.414 21.90 25.31 65.32
PQ1 228.0 31.80 259.8 5.982 597.3 139.0 736.3 2.245
GLL1 2.535 15.53 18.07 86.02 3.213 21.68 24.90 66.40
PQ2 1.381 16.98 18.36 84.63 2.962 24.32 27.28 60.60
GLL2 0.502 15.04 15.54 100.0 0.463 16.07 16.53 100.0

λ = 20 LL 3.080 20.81 23.89 75.77 5.331 35.45 40.78 45.29
PQ1 951.3 138.1 1089 1.661 2410 568.7 2979 0.620
GLL1 3.356 23.81 27.17 66.62 4.799 35.77 40.57 45.52
PQ2 3.079 18.55 21.63 83.67 0.874 28.15 29.02 63.64
GLL2 0.842 17.26 18.10 100.0 0.141 18.33 18.47 100.0

Table 1: Bias, Var, MSE and relative efficiency percentage. Sample size n = 100 and
N = 1000 replications.

4 Simulation study

Here we focused on the median function with i.i.d. data. Our objective is to compare
our hybrid local linear estimator with both the fully parametric and the fully nonpara-
metric competitors. To do so, we need first to specify a parametric model that will
be adjusted to the data. The two situations to be considered are: (1) a fixed para-
metric model which is likely incorrect is available; (2) no candidate model is known
to the analyst. In this study, we use a very simple approach that consists to employ
the Akaike’s information criterion (AIC) to select the model that seems to best fit the
data among the set of all polynomial regression models of degree equal to or less than
20, i.e. {

∑1
j=0 θjX

j , . . . ,
∑20
j=0 θjX

j}. Five conditional quantile estimating methods are
compared: (LL) the standard local linear quantile estimator; (PQ1) the parametric esti-
mator q(x, θ̂) based on the estimating equation arg minθ ϕπ(Yi−q(Xi, θ)), where q(x, θ) is
a given (fixed) model; (GLL1) the LL quantile estimator guided by q(x, θ̂); (PQ2) similar
to PQ1 but now the parametric model is chosen using the data by the mean of the AIC
criterion as described above; (GLL2) the LL quantile estimator guided by a data-driven
parametric model selected using the AIC criterion. PQ1 and GLL1 correspond to the
situation (1) while LL, PQ2 and GLL2 correspond to situation (2). Two data generating
procedures are used : (M1) Yi = 10 − 6X2

i + 2.8X3
i + λ exp(−4(Xi − 1)2) + εi; (M2)

Yi = 10 − 6X2
i + 2.8X3

i + λ sin((π/2.25)(Xi − 1)2) + εi. As the fixed parametric start,
we used q(x, θ) = θ0 + θ1X + θ2X

2 + θ3X
3 so that the parameter λ in M1 and M2 is a

misspecification parameter that controls the deviation from the specified model. Table
?? reports the overall squared bias, the overall variance, and the overall mean squared
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error. We also give a column with the relative efficiency percentage (RE%) which is
(MSEbest/MSEQ̂) × 100, where MSEbest is the minimum observed value of the mean
squared error (shown in bold).
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Abstract. The nonparametric techniques provide us with a variety of tools
for prediction at a particular spatial location. These methods may be directly
applied to produce nonparametric predictors or in an indirect way, when
used to supply an adequate estimation of the dependence structure. This
work focuses on the referred procedures, giving particular emphasis to those
approaches developed more recently.

1 Introduction

The need to reconstruct a phenomenon over the whole observation region, from a finite
set of data, can be found in a broad spectrum of areas, such as geostatistics, hydrology,
atmospheric science, etc. In most cases, only a single realization is available at each
of the spatial locations observed and this fact conveys o demand further assumptions
about the random process involved, in order to make inference possible in this setting.
Stationarity is a typical requirement and, under this condition, different techniques have
been developed to provide us with spatial predictors.

On one hand, the nonparametric approaches may be directly applied for the latter
purpose, such as that proposed in Menezes et al. (2007), based on the kernel method,
where the mean-squared error of the referred predictor tends to be negligible as the sample
size increases. Moreover, bandwidth selectors are also suggested, which are constructed



ISNI2008 International Seminar on
Nonparametric Inference

105

by applying cross-validation techniques. Nevertheless, an additional option, widely used
in practice, is that of proceeding via the kriging techniques, which produce accurate
predictions at any location of the observation region, under several assumptions; see, for
instance, Christakos (1992) and Cressie (1993). In particular, implementation of kriging
predictors demands the second-order structure to be appropriately estimated.

Typically, the variogram of the covariance functions make available a measure of the
spatial dependence, when assuming intrinsic or second-order stationarity of the random
process, respectively. In a first step, the nonparametric methods may be applied for
approximation of the latter functions, including the traditional estimator proposed in
Matheron (1963) or more robust alternatives, given in Cressie and Hawkins (1980) and
in Genton (1998). More recently, kernel proposals have been suggested in Garćıa-Soidán
et al. (2003) and in Menezes et al. (2008), for uniformly random data and clustered data,
respectively. However, validity of the latter estimators is not necessarily satisfied and,
therefore, they cannot be used directly for prediction by using the kriging equations.

We can cope with the problem mentioned above by selecting an appropriate para-
metric model and then deriving optimal estimates of the parameters, although the model
misspecification problem is one of its main drawbacks. The adequateness of a paramet-
ric model may be analyzed by graphical diagnostics, although they are often difficult
to assess. Goodness of fit tests has been proposed by Maglione and Diblasi (2004) or
in Garćıa-Soidán (2008), under gaussianity or stationarity of the random process, re-
spectively, to check whether or not a suitable model for the variogram or the covariance
functions has been selected.

Another alternative to produce valid estimation could be that of proceeding in a non-
parametric way for transformation of a given estimator into a valid one. Hall, Fisher and
Hoffman (1994) propose to combine truncation and inversion of the estimator considered,
although no strategy about selection of the truncation term is supplied. In Garćıa-Soidán
and Menezes (2007), an orthonormal series approach is suggested so as to obtain a valid
estimator, under several hypotheses, such as selection of valid bases and also of those
terms corresponding to positive Fourier coefficients.

This manuscript overviews the referred procedures, paying particular attention to
those approaches developed recently and, more specifically, to those provided by the
authors of the current work.
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Abstract. Discrete-time branching processes are stochastic growth popula-
tion models in which the individuals (or couples) with reproductive capacity
give rise new individuals in each generation. The behaviour of these popula-
tions is strongly related to the main parameters of the offspring distribution.
In practice these values are unknown and their estimation is necessary. Usu-
ally it must be observed the whole family tree up to a given generation in
order to estimate the offspring distribution. In this work, we deal with the
problem of estimating the main parameters of the model assuming that the
only observable data are the total number of individuals in each generation.
We set out the problem in a nonparametric framework and obtain the max-
imum likelihood estimator of the offspring distribution using the EM algo-
rithm. Finally, we show the accuracy of the algorithm by way of simulated
examples.

1The research was supported by the Ministerio de Educación y Ciencia and the FEDER through the
Plan Nacional de Investigación Cient́ıfica, Desarrollo e Innovación Tecnológica, grant MTM2006-08891.
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Abstract. We consider the non-standard problem of testing for random
effects in linear mixed models. This problem, while more general, is often
encountered when testing for polynomial regression against a general alter-
native, modeled nonparametrically using mixed model penalized splines. We
propose two approximations to the null distribution of the restricted likeli-
hood ratio test statistic.

1 Introduction

Linear mixed models are commonly used to model longitudinal or clustered data. More
recently, they have been employed in nonparametric regression to estimate the smoothing
parameters for penalized splines using (restricted) maximum likelihood. We focus on
linear mixed models of the form

Y = Xβ + Z1b1 + . . .+ ZSbS + ε, (1)

with random effects bs∼ N(0, σ2
sIKs

) independent of ε∼ N(0, σ2
εIn), Ks columns in

Zs, Iν the identity matrix of size ν, and n the sample size. In the case of mixed model
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penalized splines, X includes polynomial terms for a covariate x of interest, while the
corresponding Zsbs models general smooth deviations from this polynomial.

We are interested in testing one of the variance components

H0,s : σ2
s = 0 versus HA,s : σ2

s > 0, (2)

corresponding e.g. to testing a random intercept or testing for linearity against a general
alternative. This problem is non-standard due to the parameter on the boundary of
the parameter space. For i.i.d. data, the Likelihood Ratio Test (LRT) statistic for (2)
has an asymptotic 0.5χ2

0 : 0.5χ2
1 null distribution (Self and Liang, 1987; Stram and

Lee, 1994). However, for mixed model penalized splines responses are correlated under
the alternative. For S = 1, Crainiceanu and Ruppert (2004) derived the finite sample
and asymptotic null distribution of the (restricted) LRT for testing (2). For S > 1,
they recommend a parametric bootstrap, which can be computationally expensive. We
develop two faster approximations to the finite sample null distribution of the restricted
LRT.

2 Two Approximations to the RLRT Null Distribu-
tion

2.1 Fast Finite Sample Approximation

Our first approximation is inspired by pseudo-likelihood estimation, where nuisance pa-
rameters are replaced by consistent estimators. Liang and Self (1996) showed that under
certain regularity assumptions the asymptotic distribution of the pseudo-LRT is the same
as if the nuisance parameters were known. For our problem, we assume that under reg-
ularity conditions the prediction of

∑
i6=s
Zibi is good enough to allow the distribution of

the restricted LRT (RLRT) in model (1) to be closely approximated by that in

Ỹ = Xβ + Zsbs + ε, (3)

with Ỹ=Y−
∑
i 6=s
Zibi assumed known. As model (3) has only one variance component

σ2
s , the exact null distribution of the RLRT for (2) is known (Crainiceanu and Ruppert,

2004) and can be simulated from efficiently. This approach is implemented in the R-
package RLRsim by Fabian Scheipl, available from CRAN.

2.2 Mixture Approximation to the Bootstrap Distribution

If a parametric bootstrap is preferred, but computationally intensive, we propose the
following parametric approximation to the RLRT distribution

RLRT
d
≈ aUD, (4)

where U ∼ Bernoulli(1−p), D ∼ χ2
1, and

d
≈ denotes approximate equality in distribution.

p and a can be estimated from a bootstrap sample, while (4) stabilizes quantile estima-
tion and reduces the necessary bootstrap sample size. We propose estimation using the
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method of moments, as ML estimation of p is very sensitive to numerical imprecisions
(MIXED in SAS, lme in R).

Note that both our proposed approximations are asymptotically identical to the
0.5χ2

0 : 0.5χ2
1 approximation when the i.i.d. assumption holds.

3 Simulation Study

We conducted an extensive simulation study, covering a range of important situations.
Eight settings combined one or two of the following: random intercepts, random slopes,
smooth uni- and bivariate functions. Variance components not tested for were assumed to
be positive. 10,000 samples each were simulated from the RLRT null distribution, and our
two approximations were compared to a bootstrap and the 0.5χ2

0 : 0.5χ2
1 approximation.

The fast finite sample approximation produced empirical type I error rates close to the
nominal level, comparable to the exact distribution when S = 1. The approximation
was usually good even for n = 30; the necessary sample size increased somewhat when
random effects were highly correlated. The aUD approximation reduced the necessary
bootstrap sample size by about 10-20% for α = 0.05 and 50% for α = 0.001. The
0.5χ2

0 : 0.5χ2
1 approximation was always very conservative.

4 An Application from Epidemiology

The Airgene study investigates inflammatory responses to ambient air pollution con-
centrations in myocardial infarction survivors. Three inflammatory blood markers were
measured monthly up to 8 times in 1,003 patients from six European cities. Air pollution
and weather variables were recorded concurrently in each city, and patient information
was collected at baseline.

Analyses had to account for longitudinal data structure and non-linearity of pollutant
and weather dose-response functions. Smooth functions were estimated using mixed
model P-splines, penalizing deviations from linearity (Greven et al., 2006). A typical
model for the jth marker value of the ith patient, yij , is

yij = ui + f(pollij) +
L∑
l=2

βlxl,ij + g(tempij) + · · ·+ εij , (5)

with ui
iid∼ N(0, σ2

u) a random patient intercept, f(.) and g(.) smooth functions of air
pollutant and temperature, xl e.g. patient’s gender, and εij

iid∼ N(0, σ2
ε).

To illustrate, Figure 1 shows the estimated smooth associations between log(IL-6)
and two different sizes of particles in two cities. We want to know if these functions are
different from linear, as commonly assumed. This corresponds to testing (2) in (5), where
σ2
s controls the smoothness of f . Note that the i.i.d. assumption is violated and S ≥ 2.

Test results for the ultrafine particles in Athens are given in Table 1. The fast finite
sample approximation reduces computation time from hours to seconds, with results
similar to a bootstrap, indicating nonlinearity. For the bootstrap, computation time
can be reduced by using the aUD approximation with less samples. The 0.5χ2

0 : 0.5χ2
1

approximation is clearly conservative. The PM2.5-log(IL-6) dose-response function in
Rome was found to be not significantly different from linear (p = 0.1).
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Figure 1: Estimated dose-response functions with approximate pointwise 95% confi-
dence intervals for log(IL-6) and a) ultrafine particles (diameter < 0.1µg) in Athens b)
PM2.5 (diameter < 2.5µg) in Rome.

Approximation Samples Computation time p-value
Fast Finite Sample (Matlab) 100,000 33sec 0.014
Fast Finite Sample (R) 100,000 88sec 0.016
aUD 1,000 19min 0.017
aUD 10,000 3.4h 0.019
0.5χ2

0 : 0.5χ2
1 - - 0.031

Parametric Bootstrap 10,000 3.4h 0.017

Table 1: Testing the association between log(IL-6) and ultrafine particles in Athens for
linearity. The test statistic was RLRT = 3.5.

5 Summary

We have discussed testing for random effects in linear mixed models. An important spe-
cial case is testing for polynomial versus nonparametric regression using mixed model
penalized splines. We have proposed two approximations to the finite sample null distri-
bution of the RLRT. Extensive simulations showed superiority of both approximations
to the 0.5χ2

0 : 0.5χ2
1 approximation and parametric bootstrap currently used. Our results

extend existing methodology to linear mixed models with more than one random effect
and correlated responses, such as for mixed model penalized splines. We applied our
approach to testing for linearity of air pollution dose-response functions.
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CLT in nonlinear wavelet
regression with left-truncated
α-mixing observations

Han-Ying Liang1

Department of Mathematics, Tongji University, and Department of Statistics and OR,
University of Vigo

Jacobo de Uña-Álvarez2

Department of Statistics and OR, University of Vigo

Abstract. In this paper we establish the asymptotic normality of a new
nonlinear wavelet estimator for the regression function, in the context of left-
truncated, dependent data.

1 Introduction

The importance of wavelets in curve estimation is well known since the nineties. Unlike
other commonly used estimation techniques (e.g. kernel estimators), wavelets adapt (in
the minimax sense) to the smoothness degree of the underlying curve. Hall and Patil
(1995, 1996) established the asymptotic mean integrated squared error (MISE) of the
nonlinear wavelet estimator of the density and the regression function, including the case
of discontinuities (which do not influence the rate of convergence).

In Survival Analysis and other fields, censoring and truncation are phenomena typi-
cally encountered in the recording of the data. Several papers have considered adaptation
of nonlinear wavelets to the censored scenario (e.g. Li et al., 2008). However, for the best

1Supported by the National Natural Science Foundation of China (10571136) and by the Grants
MTM2005-01274 (FEDER support included) and PGIDIT07PXIB300191PR

2Supported by the Grants MTM2005-01274 (FEDER support included) and
PGIDIT07PXIB300191PR
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of our knowledge, literature on nonlinear wavelets for left-truncated data is non-existent.
Besides, results on wavelets for survival data have been restricted to the independent
framework; however, dependent survival data are found when sampling clusters of in-
dividuals (family members, or repeated measurements taken on the same subject; see
Cai and Kim, 2003, for further motivation). For α-mixing (complete) observations, non-
linear wavelet density and regression estimation was considered in Liang et al. (2005)
and Truoug and Patil (2001) respectively. Interestingly, the MISE rate of convergence is
unchanged (w.r.t. the independent case) under this type of short-range dependence. For
left-truncated, α-mixing data, de Uña-Álvarez and Liang (2008) introduced a new non-
linear wavelet estimator of the regression function (and of the covariate’s density), and
they derived the asymptotic MISE formula. In this paper we establish the asymptotic
normality of these estimators.

2 The nonlinear wavelet estimators

In the sequel, {(Xk, Yk, Tk) =: ξk, k ≥ 1} is assumed to be a stationary α-mixing sequence
of random vectors from (X,Y, T ), where Y is a continuous lifetime, X is a continuous
one-dimensional covariate, and T is the left-truncation (continuous) variable (see e.g.
Woodroofe, 1985). We assume throughout that T and (X,Y ) are independent. Recall
that the sequence {ξk, k ≥ 1} is said to be α-mixing if the α-mixing coefficient

α(n) := sup
k≥1

sup{|P ((A ∩B)− P (A)P (B)| : A ∈ F∞n+k, B ∈ Fk1 }

converges to zero as n→∞, where Fml denotes the σ-algebra generated by ξl, ξl+1, . . . , ξm
with l ≤ m. Among various mixing conditions used in the literature, α-mixing is reason-
ably weak; see Cai and Kim (2003) for applications in Survival Analysis.

Introduce the regression function

E(Y |X = x) := m(x) x ∈ R, (1)

which can be written as m(x) = h(x)
v(x) , where v(x) stands for the covariate’s density, and

h(x) =
∫

R yf(x, y)dy with f(·, ·) being the joint density function of (X,Y ).
For all function v(·) in L2(R), we have the following wavelet expansion:

v(x) =
∞∑

j=−∞
amjφmj(x) +

∞∑
i=m

∞∑
j=−∞

aijψij(x), (2)

where amj =
∫
v(x)φmj(x)dx and aij =

∫
v(x)ψij(x)dx are the wavelet coefficients of the

function v(·) and the series in (2) converges in L2(R). See Daubechies (1992) for more
details on wavelets. We define the non-linear wavelet estimator of v(x) as

v̂n(x) =
∞∑

j=−∞
âmjφmj(x) +

π∑
i=m

∞∑
j=−∞

âijI(|âij | > δ)ψij(x), (3)

where δ > 0 is a “threshold” and π ≥ 1 is another smoothing parameter, and the wavelet
coefficients âmj and âij are defined as follows:

âmj =
θn
n

n∑
k=1

1
Gn(Yk)

φmj(Xk), âij =
θn
n

n∑
k=1

1
Gn(Yk)

ψij(Xk). (4)
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Here, Gn denotes the product-limit estimator of the truncation distribution G, while
θ is an estimator of the probability of no truncation, namely

θn =
Gn(y)[1− Fn(y−)]

Cn(y)
.

where Fn stands for the product-limit estimator of the lifetime distribution F .
Similarly, if the function h is square-integrable then its wavelet expansion is given by

h(x) =
∞∑

j=−∞
bmjφmj(x) +

∞∑
i=m

∞∑
j=−∞

bijψij(x), (5)

where bmj =
∫
h(x)φmj(x)dx and bij =

∫
h(x)ψij(x)dx. Note that

Hn(x) =
θn
n

n∑
k=1

Yk
Gn(Yk)

I(Xk ≤ x)

is an estimator of H(x) =
∫
u≤x h(u)du. So, the proposed non-linear wavelet estimator

of h(x) is

ĥn(x) =
∞∑

j=−∞
b̂mjφmj(x) +

π∑
i=m

∞∑
j=−∞

b̂ijI(|b̂ij | > δ)ψij(x), (6)

where b̂mj = θn
n

∑n
k=1

Yk
Gn(Yk)φmj(Xk), b̂ij = θn

n

∑n
k=1

Yk
Gn(Yk)ψij(Xk). Further, from (3)

and (6), a wavelet estimator of m(x) is given by m̂(x) = ĥn(x)/v̂n(x).

3 Main results

In the sequel, let C,C0, C1, · · · and c denote generic finite positive constants, whose values
are unimportant and may change from line to line, An = O(Bn) stand for An ≤ CBn,
an � bn mean 0 < lim inf an/bn ≤ lim sup an/bn < ∞. Throughout this paper, we
assume that

aG < aF bG ≤ bF <∞. (7)

Let xm = [2mx]/2m for x ∈ R and

Σ(x) =
(

Σ0(x) Σ1(x)
Σ1(x) Σ2(x)

)
,

Σi(x) =
∫ ∫

y2−if(x, y)
G(y)

[∑
l

φ(u+ l)φ(l)
]2
dudy (i = 0, 1, 2).

In order to formulate the main results, we need to impose the following assumptions.

(A1) For all integers j ≥ 1, the joint conditional density v∗j (·, ·) of X1 and Xj+1 exists
on R × R and satisfies v∗j (t1, t2) ≤ C for all t1, t2 ∈ R with |t1 − t2| ≤ δ0 for some
δ0 > 0.
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(A2) (i) The density v(·) satisfies 0 < v(x) ≤ C2 for x ∈ R;

(ii) f(x, y) is bounded and continuous with respect to the first component.

(A3) The smoothing parameters π and δ are functions of n. Suppose that π →∞ as n→
∞ in such a manner that 2πδ2 = O(n−ε) for some 0 < ε < 1, δ ≥ C3(n−1 ln(n))1/2.

(A4) The sequence α(n) satisfies

(i) there exist positive integers p := p(n) and q := q(n) such that p+ q ≤ n, and
as n→∞, p/n→ 0, qp−1 → 0 and (n/p)α(q)→ 0;

(ii) there exist γ > 2 and η > 1− 2/γ such that
∑∞
l=1 l

η[α(l)]1−2/γ <∞.

Theorem 1 In addition to the usual conditions on the wavelet functions and the assump-
tions (A1)-(A4) and (7). Assume that the r-th derivative v(r)(·) of v(·) is continuous
and bounded. Let α(k) = O(k−λ) for some

λ > max{3, d(d+ µ)/(2µ), 1 + 4r/[ε(2r + 1)], (τ − 1)(2τ + 1)(2− ε)/(2ε(τ − 2))}, (8)

where τ > 2, d > 2, µ > 0, and

ε(λ+ 1 + 2b) + 2b/(2r + 1) ≥ 2(b+ 1) for b > 1. (9)

If 2m � n1/(2r+1) and (p2m/n)d/2−12mµ/(d+µ) → 0, then

√
n2−m(v̂n(xm)− v(xm)− a(xm)) D→ N(0, σ2(x)) x ∈ R,

where a(x) = (r!)−1v(r)(x)2−rm
∫
ur[
∑
l φ(u + l)φ(l)]du and σ2(x) = θΣ2(x). Further,

if n2−(2r+1)m → 0, then
√
n2−m(v̂n(xm)− v(xm)) D→ N(0, σ2(x)).

Theorem 2 Suppose that the assumptions in Theorem 2 are satisfied, and that the r-th
derivative h(r)(·) of h(·) is continuous and bounded. If

2m � (n ln(n))1/(2r+1) and (p2m/n)d/2−12mµ/(d+µ) → 0,

then
√
n2−m(m̂n(xm)−m(xm)) D→ N(0,∆2(x)) x ∈ R, where

∆2(x) =
θ[Σ0(x)v2(x) + Σ2(x)h2(x)− 2v(x)h(x)Σ1(x)]

v4(x)
.

Remark. In Theorems 1 and 2, if we replace α(k) = O(k−λ) by α(k) = O(ρk) for some
0 < ρ < 1, then (8) and (9) are automatically satisfied.
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Poster 16

Heteroscedastic unbalanced
two-fold nested model when
the numbers of classes and
subclasses are both large

Shu-Min Liao
Department of Statistics. The Pennsylvania State University

Michael G. Akritas
Department of Statistics. The Pennsylvania State University

Abstract. In the context of the heteroscedastic and unbalanced two-fold
nested design, we consider testing for the subclass effect. The proposed test
procedure pertains to cases having a large number of classes and a large num-
ber of subclasses, while the cell sizes are small. The asymptotic theory of the
proposed test statistic is obtained under both the null and alternative hy-
potheses. Its performance is compared numerically with that of the classical
F-test.

1 The general two-fold nested model

In the general unbalanced two-fold fixed-effects model, we observe

Yijk = µij + σij · eijk, i = 1, · · · , r; j = 1, · · · , ci; k = 1, · · · , nij , (1)

where the µij and σij are bounded and eijk are independent with

E(eijk) = 0, V ar(eijk) = 1. (2)
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Note that the general model (1), (2) does not assume that the errors eijk are normally,
or even indentically, distributed. Let

C =
r∑
i=1

ci, nic =
ci∑
j=1

nij , Nc =
r∑
i=1

ci∑
j=1

nij =
r∑
i=1

nic. (3)

The means µij are typically decomposed as

µij = µ+ αi + δij , (4)

where we assume that

r∑
i=1

nicαi = 0 and
ci∑
j=1

nijδij = 0, ∀i.

In this paper, we are mainly interested in testing H0: δij = 0 (no subclass effect). Let

MSδ =
Pr
i=1

Pci
j=1 nij(Ȳij·−Ȳi··)

2

C−r , (5)

MSE =
Pr
i=1

Pci
j=1

Pnij
k=1(Yijk−Ȳij·)2

Nc−C , (6)

where Ȳij· and Ȳi·· are the corresponding unweighted means of Yijk within each subclass
and within each class, i.e.

Ȳij· =
1
nij

nij∑
k=1

Yijk, Ȳi·· =
1
nic

ci∑
j=1

nij∑
k=1

Yijk =
1
nic

ci∑
j=1

nij Ȳij·.

Then, the usual F-test statistic for testing H0: δij = 0 is

F δC ≡
MSδ

MSE
. (7)

Under the normal model, i.e. if eijk are assumed to be iid N(0, 1), we have that

F δC ∼ FC−r,Nc−C , under H0 : δij = 0. (8)

2 Proposed test statistic and the main theorem

In this section, we first propose a test statistics for the hypothesis H0 : δij = 0, as r →∞,
min (ci)→∞, but nij remain fixed, and then summarize its limiting distributions, both
under the null and the alternative hypotheses, using a theorem in the end.

It is not hard to verify that, in the homoscedastic case, E(MSE) = E(MSδ) under
the null hypothesis. In the heteroscedastic case, this is no longer true, but the similar
equality could be achieved by replacing MSE with

MSE∗ =
1

C − r

r∑
i=1

ci∑
j=1

(
1− nij

nic

)
S2
ij , where S2

ij ≡
1

nij − 1

nij∑
k=1

(Yijk − Ȳij·)2. (9)
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We then define our test statistic as

F ∗C ≡
MSδ

MSE∗
. (10)

It is easy to verify that, in the balanced case, F ∗C = F δC , where F δC is the classical F -
statistic given in (7). Then, the asymptotic distribution of the proposed test statistic,
F ∗C , defined in (10), is given by the following theorem.

Theorem 1 (The asymptotic distribution of F ∗C) Consider the model and assump-
tions given in (1), (2), and the decomposition of the means given in (4). In addition, we
assume that there exist κij, λi, a1, b1, b2 and b3 such that as r →∞ and min (ci)→∞,

E(e3
ijk) = 0, E(e4

ijk) = κij , and E|eijk|4+2ε <∞ for some ε > 0;

√
C
(r · ci

C
− λi

)
−→ 0, where λi < 1, and

1
r

r∑
i=1

λi = 1,

√
C

 1
C

r∑
i=1

ci∑
j=1

σ2
ij − a1

 −→ 0,
1
C

r∑
i=1

ci∑
j=1

σ4
ij −→ b1,

1
C

r∑
i=1

ci∑
j=1

σ4
ij

nij − 1
−→ b2,

1
C

r∑
i=1

ci∑
j=1

σ4
ij(κij − 3)

nij
−→ b3.

Then, under alternatives δij which satisfy

√
C

 1
C

r∑
i=1

ci∑
j=1

nijδ
2
ij − θ1

 −→ 0,
1
C

r∑
i=1

ci∑
j=1

nijδ
2
ijσ

2
ij −→ θ2,

as r →∞, min (ci)→∞ while nij stay fixed, we have

√
C (F ∗C − (1 + θ∗)) d→ N

(
0,

1
a2

1

[
2(b1 + b2) + 4(θ2 + b2θ

∗) + (2b2 + b3)θ∗2
])

,

where θ∗ = θ1/a1.

Under the null hypothesis H0 : δij = 0, which results in θ∗ = 0, we then have

√
C (F ∗C − 1) d→ N

(
0,

2b1 + 2b2
a2

1

)
. (11)

Proof: Omitted for now.

3 Simulations

In this section, simulations are used to compare two test procedures: the classical F-
test procedure and the proposed test procedure of (11). Let CF and HET denote them
respectively. The achieved simulated sizes, based on 10,000 simulation runs, are shown
in Table 1. (Due to the space limit, the details of the simulation settings are omitted.)
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r=5,C=27 r=30,C=165 r=50,C=275

CF HET CF HET CF HET
Normal 0.3682 0.1318 0.5596 0.0864 0.2269 0.0832
Exponen 0.3550 0.1134 0.5458 0.0761 0.2182 0.0726
LogNorm 0.3254 0.0996 0.5470 0.0639 0.2386 0.0596
Mixture 0.3218 0.1028 0.5471 0.0635 0.2194 0.0636

r=5,C=151 r=30,C=915 r=50,C=1524

CF HET CF HET CF HET
Normal 0.5997 0.0772 0.4674 0.0627 0.0567 0.0551
Exponen 0.5900 0.0649 0.4748 0.0612 0.0655 0.0526
LogNorm 0.5926 0.0590 0.4630 0.0523 0.1169 0.0454
Mixture 0.5912 0.0608 0.4643 0.0553 0.0697 0.0520

r=5,C=502 r=30,C=3015 r=50,C=5025

CF HET CF HET CF HET
Normal 0.7600 0.0668 0.0007 0.0578 0.0138 0.0569
Exponen 0.7626 0.0558 0.0015 0.0543 0.0185 0.0530
LogNorm 0.7453 0.0450 0.0195 0.0424 0.0595 0.0425
Mixture 0.7607 0.0510 0.0015 0.0534 0.0165 0.0506

Table 1: Sizes over 10, 000 simulation runs under heteroscedasticity and unbalanced
design (α = 0.05).

4 Application

Some more applications will be presented in the talk/poster at ISNI2008.

5 Short concluding comments

We have shown, via theoretical derivation and numerical evidence, that the classical F-
test procedure is sensitive to departures from homoscedasticity, even under normality
and/or under the balanced design (simulation results for the latter case are not shown
here). In order to accommodate heteroscedasticity and the unbalanced design, we pro-
pose a different test statistic, F ∗C as defined in (10), and then establish its asymptotic
distribution, both under the null and alternative hypotheses. Simulation results demon-
strate the accuracy of the proposed test procedure as r →∞ and min(ci)→∞.
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Poster 17

Nonparametric k-sample tests
based on kernel density
estimators

Pablo Mart́ınez-Camblor
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Abstract. In this work new k-sample tests based on the comparison of
kernel density estimators are introduced and investigated. The impact of the
smoothing parameter in the performance (power) of the tests is discussed.
An automatic bandwidth selector based on the bootstrap is proposed. The
performance of the tests is illustrated in a simulated scenario. Comparison
with other tests based on empirical distributions is included.

1 Introduction

The k sample problem is an old topic devoted to the comparison of k different populations
independently sampled. Traditionally, parametric methods as the One-Way ANOVA F-
test or nonparametric location tests such as the Kruskal-Wallis test have been used to
that end. In the general nonparametric setup, omnibus k-sample tests were introduced
via proper generalizations of Kolmogorov-Smirnov, Cramér-von Mises, and Anderson-
Darling tests (see Kiefer, 1959 and Scholz and Stephens, 1987). However, such methods
may behave poorly (low power) in practice, specially in problems in which the underlying
populations have similar locations but different shapes (Zhang and Wu, 2007; Mart́ınez-
Camblor et al., 2008).

Comparison of the kernel estimators fn1 ,... ,fnk pertaining to the k population den-
sities (assumed to exist) is a possible alternative approach. For the 2-sample problem,
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Anderson et al. (1994), Louani (2000), and Cao and Van Keilegom (2006) proposed and
investigated such type of smooth tests. For the k-sample problem (with arbitrarily large
k), a smooth test statistic was first proposed by Mart́ınez-Camblor et al. (2008). The
authors based the comparison on the area under the kernel density estimators which is
shared by all of them. This ”common area” statistic is explicitly defined by
ACk =

∫
min{fn1 , ..., fnk}

In general, a small value of ACk indicates that the populations may differ. This
smooth test may behave much better than other tests based on the comparison of empir-
ical distribution functions, in situations in which the k populations are different in their
shapes (Mart́ınez-Camblor et al., 2008). Besides, these authors proposed a data-driven
bandwidth selector based on the bootstrap which, while being computationally feasible,
leads to a quasi-optimal level of smoothing (in the sense of maximizing the power of the
test).

In this work we introduce news test statistics based on the comparison of the kernel
density estimators. The convergence to a normal under the null hypothesis is established
for these new tests. In a simulation study, we illustrate the influence of the level of
smoothing in the power of the tests. As for the ”common area” measure, the bootstrap
is used to define an automatic bandwidth selector. Finally, the different tests based on
the automatic bandwidth are compared. We include in the comparison the Kruskal-
Wallis test and the k-sample versions of the classical Kolmogorov-Smirnov, Cramér-von
Mises, and Anderson-Darling tests, as well as three likelihood-ratio tests introduced by
Zhang and Wu (2007).

2 New k-sample smooth tests

We introduce three new smooth test statistics by using the L1, L2 and L∞ measures,

Lk,1 =
1
n

k∑
i=1

ni

∫
|fni(t)− fn(t)|dt,

Lk,2 =
1
n

k∑
i=1

ni

∫
(fni(t)− fn(t))2dt,

Sk =
1
n

k∑
i=1

ni sup
t∈
|fni(t)− fn(t)|,

where fn stands for the kernel density estimator (e.g. Wand and Jones, 1995) com-
puted from the pooled sample with n = n1 + ... + nk observations. The asymptotic
null distribution of the test statistics may be obtained following lines similar to those
in Mart́ınez-Camblor et al. (2008) for ACk; the involved arguments basically refer to
Lemma 6 in Horváth (1991). In practice, we suggest using the bootstrap to evaluate the
significance of the test. Note that fni and fn need a bandwidth or smoothing parameter.
Let hni the bandwidth used for the estimator fni ; we take hni = Sσ̂nin

−1/5
i where σ̂ni

is the standard deviation of the i-th sample and S is a parameter chosen (on a given
grid) in order to maximize the power of the test. This is done by using the smoothed
bootstrap in the following way. Put T for any test statistic among ACk, Lk,1, Lk,2, and
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Sk, and let Tr denote the test statistic when using the specific value Sr taken from the
grid of S-values {S1, ..., St}.

Step 1. Draw B times k independent resamples
{
x∗ij,b

}ni
j=1

, 1 ≤ i ≤ k, b = 1, ..., B,

from fn (use a pilot bandwidth g for fn). Compute the bootstrap p-value of Tr:
p∗r = 1

B

∑B
b=1 I(T ∗r,b > Tr), where T ∗r,b is the bootstrap version of Tr (based on the

b-th bootstrap resample)

Step 2. Compute the minimum p-value over the grid: p∗min = min {p∗1, ..., p∗t }

Step 3. Draw new B′ bootstrap resamples as in Step 1 and compute

p∗∗ =
1
B′

B′∑
b′=1

I(p∗∗min,b′ < p∗min),

where p∗∗min,b′ = min
{
p∗∗1,b′ , ..., p

∗∗
t,b′

}
and p∗∗r,b′ = 1

B

∑B
b=1 I(T ∗r,b > T ∗∗r,b′)

Step 4. Reject the null hypothesis (of equality of populations) if p∗∗ < α, where α is
the nominal level of the test

This bandwidth selector, which we call double minimum bandwidth, was first used
for the ”common area” measure ACk, leading to powers close to the optimal (Mart́ınez-
Camblor et al., 2008). In this work we explore the performance of the double minimum
bandwidth also for the other three test statistics.

3 Main conclusions

From the simulations performed so far, several interesting conclusions arise. First, tests
based on the comparison of kernel density estimators are more powerful than their com-
petitors (based on empirical distribution functions) at least when the underlying densities
are different in their shapes. Among these smooth tests, the Lk,1 statistic shows the best
overall performance. Secondly, the power of the smooth tests is strongly influenced by
the bandwidth. The double minimum automatic bandwidth selector seems to provide a
quasi-optimal power; at the same time, its computational cost is not as high as in other
resampling plans recently proposed for related problems (Cao and Van Keilegom, 2006).
Finally, the idea behind the double minimum bandwidth could be adapted to testing
scenarios other than the k-sample problem, and this seems to be a promising field of
research and applications.
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Mart́ınez-Camblor P, de Uña-Álvarez J & Corral N, (2008) k-Sample test based on the
common area of kernel density estimator, Journal of Statistical Planning and Infer-
ence, doi:10.1016/j.jspi.2008.02.008.

Scholz FW & Stephens MA, (1987) k-Samples Anderson-Darling test. J. Amer. Statist.
Assoc. 82, 918–924.

Wand, MP & Jones, MC (1995) Kernel Smoothing. Chapman & Hall.

Zhang J & Wu Y, (2007) k-Sample test based on the likelihood ratio, Computational
Statistics & Data Analysis, 51, 9, 4682–4691.



ISNI2008 International Seminar on
Nonparametric Inference

127

Poster 18

Lifetime comparisons with
early termination of
experiments

Tahani A. Maturi1

Dept of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

Pauline Coolen-Schrijner2

Dept of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

Frank P.A. Coolen
Dept of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

Abstract. We consider lifetime experiments to compare units from different
groups, which can be ended before all units have failed. Units’ lifetimes may
also be right-censored at any time. Nonparametric predictive inference for
selecting the best group is presented, with uncertainty quantified by lower
and upper probabilities, and with attention to the effect of early termination
of the experiment.

1 Introduction

We consider comparison of lifetimes of units from different groups, simultaneously placed
on an experiment, and we focus on the effect of early termination of the experiment
before event times of all units have been observed, where ’event’ is either the ’failure’
of interest or right-censoring, with the censoring mechanism assumed to be independent
of the failure process. This scenario occurs in ‘precedence testing’ (Balakrishnan and
Ng (2006)). We present Nonparametric Predictive Inference (NPI) (Coolen (2006)) for

1I am grateful to Pauline Coolen-Schrijner for her guidance towards my independent research career.
Pauline, you were my supervisor and my lovely friend.

2Pauline died on 23.4.2008, this paper is dedicated to her.
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such situations, with uncertainty quantified by lower and upper probabilities for events
that compare the failure times of one further unit from each group. Lower and upper
probabilities generalize classical probabilities, and a lower (upper) probability for event
A, denoted by P (A) (P (A)), can be interpreted in several ways (Coolen (2006)): as
supremum buying (infimum selling) price for a gamble on the event A, or as the maximum
lower (minimum upper) bound for the probability of A that follows from the assumptions
made. Informally, P (A) (P (A)) can be considered to reflect the evidence in favour of
(against) event A.

2 Main results

Nonparametric predictive inference (NPI) is based on Hill’s assumptionA(n) (Hill (1968)),
which implies direct (lower and upper) probabilities for a future observable random quan-
tity, based on observed values of n related random quantities (Coolen (2006)). NPI is
suitable if there is little knowledge about random quantities of interest, other than the
n observations, or if one does not want to use such information. Coolen and Yan (2004)
presented rc-A(n) as a generalization of A(n) for right-censored data, using the extra as-
sumption that, at a moment of censoring, the residual time-to-failure of a right-censored
unit is exchangeable with the residual time-to-failure of all other units that have not yet
failed or been censored.

We consider a life-testing experiment to compare units of k ≥ 2 groups, which are
assumed to be fully independent, with the experiment starting on all units at time 0.
The experiment can be terminated before all units have failed, say at time T0, which is
assumed not to hold any information on residual time-to-failure for units that have not
yet failed. We also allow right-censoring to occur before the experiment is stopped, due
to a censoring process that is independent of the failure process. So we consider both
right-censored observations in the original data and right-censoring due to stopping the
experiment at T0. For group j, j = 1, . . . , k, nj units are in the experiment, of which uj
units fail before (or at) T0, with ordered failure times 0 < xj,1 < xj,2 < . . . < xj,uj ≤ T0,
and cj,1 < cj,2 < . . . < cj,υj < T0 are right-censoring times (we assume no tied obser-
vations for ease of notation, generalization is straightforward by considering limits, and
the example in Section 3 includes ties). Let xj,0 = 0 and xj,uj+1 = ∞ (j = 1, . . . , k).
Let sj,ij be the number of right-censored observations in the interval (xj,ij , xj,ij+1), with
xj,ij < c

ij
j,1 < c

ij
j,2 < . . . < c

ij
j,sj,ij

< xj,ij+1 and
∑uj
ij=0 sj,ij = υj , so nj − (uj + υj) units

from group j are right-censored at T0.

To compare these k groups, we consider a hypothetical further unit from each group
which would also have been involved in this experiment, with Xj,nj+1 the random failure
time for the further unit from group j, assumed to be exchangeable with the failure times
of the nj units of the same group included in the experiment. The assumption rc-A(nj)

implies the lower and upper probabilities presented below, which are optimal bounds
under the assumptions made (justifications will be presented elsewhere). We restrict
attention to the events Xl,nl+1 = max1≤j≤kXj,nj+1, for l = 1, . . . , k. The lower and
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upper probabilities below are specified with the use of the following functions:

M j
ij

= MXj,nj+1(xj,ij , xj,ij+1) =
1

nj + 1

∏
{r:cr<xj,ij }

ñj,cr + 1
ñj,cr

M j
ij ,tj

= MXj,nj+1(cijj,tj , xj,ij+1) =
1

(nj + 1)
(ñ
j,c
ij
j,tj

)−1
∏

{r:cr<c
ij
j,tj
}

ñj,cr + 1
ñj,cr

M j
T0

= MXj,nj+1(T0,∞) =
nj − (uj + υj)

nj + 1

∏
{r:cr<T0}

ñj,cr + 1
ñj,cr

where ij = 0, . . . , uj , tj = 1, . . . , sj,ij , and ñj,cr and ñ
j,c
ij
j,tj

are the number of units from

group j in the risk set just prior to time cr and c
ij
j,tj

, respectively. Also

P jij = P (Xj,nj+1 ∈ (xj,ij , xj,ij+1)) =
1

nj + 1

∏
{r:cr<xj,ij+1}

ñj,cr + 1
ñj,cr

The lower probabilities are

P (l) = P

(
Xl,nl+1 = max

1≤j≤k
Xj,nj+1

)
=

ul∑
il=0


k∏
j=1

j 6=l

 uj∑
ij=0

1(xj,ij+1 < xl,il)P
j
ij

M l
il

+
sl,il∑
tl=1

k∏
j=1

j 6=l

 uj∑
ij=0

1(xj,ij+1 < cill,tl)P
j
ij

M l
il,tl

+M l
T0

k∏
j=1

j 6=l

uj∑
ij=0

1(xj,ij+1 < T0)P jij

and the upper probabilities are

P
(l)

= P

(
Xl,nl+1 = max

1≤j≤k
Xj,nj+1

)
=

ul∑
il=0

P lil

k∏
j=1

j 6=l


uj∑
ij=0

1
(
xj,ij < xl,il+1

)
M j
ij

+
uj∑
ij=0

sj,ij∑
tj=1

1(cijj,tj < xl,il+1)M j
ij ,tj

+ 1 (T0 < xl,il+1)M j
T0

+M l
T0

Note that T0 influences the lower and upper probabilities only through the uj . If

ul = 0 then P
(l)

= 1, while if uj = 0 for all j 6= l then P (l) = 0. If the experiment

is terminated before a single unit has failed, then P (l) = 0 and P
(l)

= 1 for all groups.
These extreme cases illustrate an attractive feature of lower and upper probabilities in
quantifying the strength of statistical information, in an intuitive manner that is not
possible with precise probabilities. If T0 increases, P (l) never decreases and P

(l)
never

increases, and they can only change if further events are observed.

If the experiment is ended when all units have been observed (whether the units have
been failed or observed as right censoring), the terms including T0 in the above (lower
and upper probabilities) formulas will vanish.
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3 Example

We use data from Desu and Raghavarao (2004)[p.263], representing the recorded times
(months) until promotion at a large company, for 19 employees in k = 3 departments
(’groups’): for group 1: 15, 20+, 36, 45, 58, 60 (n1 = 6), for group 2: 12, 25+, 28, 30+,
30+, 36, 40, 45, 48 (n2 = 9), for group 3: 30+, 40, 48, 50 (n3 = 4), where ” + ” indicates
that the employee left the company at that length of service before getting promotion
(right-censoring). We consider at which department one needs to work the longest to get
a promotion. In this example the ‘best group’, in terminology from Section 2, actually
represents the worst department for promotions. This data set contains tied observa-
tions, in NPI these are dealth with by assuming that they differ a very small amount,
such that the lower (or upper) probability of interest is smallest (largest), which is an
attractive manner for dealing with ties.

For some ranges of values of T0 the lower probabilities P (l) and upper probabilities
P

(l)
, for l = 1, 2, 3, are presented in Table 1. At any value of T0, we can indicate that we

have a strong evidence that group l is the best if P (l) > P
(j)

for all j 6= l, which is not the
case in this example. For larger values of T0, such that most units have been observed,
group 3 has most imprecision remaining, reflecting that there are only few observations
for group 3.

T0 u1 u2 u3 P (1) P
(1)

P (2) P
(2)

P (3) P
(3)

11 0 0 0 0 1 0 1 0 1
17 1 1 0 0 0.8629 0 0.9029 0.0114 1
27 1 1 0 0 0.8629 0 0.9029 0.0114 1
33 1 2 0 0 0.8629 0 0.7974 0.0243 1
38 2 3 0 0 0.7140 0 0.6591 0.0887 1
42 2 4 1 0.0678 0.7140 0.0248 0.5398 0.1135 0.8332
47 3 5 1 0.0813 0.6148 0.0315 0.4341 0.1969 0.8332
52 3 6 3 0.2393 0.6148 0.0315 0.3542 0.2161 0.6618
59 4 6 3 0.2393 0.6148 0.0315 0.3542 0.2161 0.6618
61 5 6 3 0.2393 0.6148 0.0315 0.3542 0.2161 0.6618

Table 1: The best group: lower and upper probabilities.
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Abstract. One approach to choosing the amount of smoothing in nonpara-
metric regression is to select the simplest estimate for which the residuals
“look like white noise”. This can be checked with the so-called multireso-
lution criterion introduced by Davies and Kovac (2001). We show that this
criterion is related to a norm, the multiresolution norm (MR-norm), and dis-
cuss some remarkable properties.

1 The multiresolution criterion

Consider the nonparametric regression model

y(ti) = f(ti) + ε(ti) (i = 1, ..., N) (1)

with fixed design points 0 ≤ t1 < · · · < tN ≤ 1, where ε(t1), . . . , ε(tN ) are i.i.d. normally
distributed with variance σ2. Methods for estimating f usually require the choice of
a smoothing parameter. A recent approach to this, introduced by Davies and Kovac
(2001) in connection with their taut-string method, is to choose the simplest estimate for
which the residuals ”look like white noise”. We will consider the vector of evaluations
of some estimate f̂ at the design points (f̂(t1), . . . , f̂(tN )), which we will also denote
by f̂ . Similarly, y := (y(t1), . . . , y(tN )) denotes the vector of observations and r =
(f̂(t1)−y(t1), . . . , f̂(tN )−y(tN )) the vector of residuals. The residuals are now examined
using the multiresolution criterion (Davies and Kovac 2001):

max
I∈I

1√
|I|

∣∣∣∣∣∑
t∈I

rt

∣∣∣∣∣ ≤ C, (2)

1Research supported by SFB 475 ”‘Reduction of Complexity in Multivariate Data Structures”’ funded
by the German Research Foundation (DFG).
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Figure 1: The MR-norm unit ball in R2

Definition 1 Let N ∈ N and I = {I|I = {i, i + 1, . . . , l}, 1 ≤ i ≤ l ≤ N}. The
multiresolution norm (MR-norm for short) on RN is defined by:

‖(x1, . . . , xN )‖MR := max
I∈I

1√
|I|

∣∣∣∣∣
∑

t∈I

xt

∣∣∣∣∣ .

The unit ball in R2 is shown in Figure 1.
It is clear that the residuals satisfy (2) iff ‖r‖MR ≤ C, i.e. they are contained

in a ball around the origin or - equivalently - f̂ is contained in a ball around
the data y. The ability to detect structure in the residuals is mainly due to the
fact that the MR-norm lacks basic invariance properties that e.g. p-norms do
possess. In the following, we highlight some of these (Mildenberger 2008):

Consider the p-norms defined by

‖(x1, . . . , xN )‖p =

{ (∑N
t=1 |xt|p

)1/p
(1 ≤ p < ∞)

max{|x1|, . . . , |xN |} (p = ∞)
.

Let Sn denote the group of permutations of {1, . . . , N} with

πx := (xπ(1), . . . , xπ(N)) for π ∈ Sn, x ∈ RN .

Furthermore, we consider the sign group Tn := {−1,+1}N with component-wise
multiplication. We define:

sx := (s1x1, . . . , snxn) for s ∈ Tn, x ∈ RN .

From the definition of ‖ · ‖p it is clear that ‖πx‖p = ‖x‖p and ‖sx‖p = ‖x‖p for
all x ∈ RN , π ∈ SN , s ∈ Tn and p ∈ [1,∞], since the p-norms depend only on
the absolute values of the components. The multiresolution norm of a vector is
in general not invariant under these transformations. Consider

‖(1,−1, 1)‖MR = 1

‖(1, 1,−1)‖MR =
√

2.

2

Figure 1: The MR-norm unit ball in R2.

where I = {I|I = {i, i+ 1, . . . , l}, 1 ≤ i ≤ l ≤ N} is the system of all discrete intervals in
{1, . . . , N}. |I| denotes the number of points in I and C a suitably chosen constant. The
criterion (2) captures the idea that residuals should behave like white noise, that is they
should not be too large, nor should they exhibit any structures that indicate that f has
not been estimated properly. Since sums of residuals over intervals are evaluated, longer
runs of residuals of the same sign make (2) large, even if they are moderate in size.

Definition 1 Let N ∈ N and I = {I|I = {i, i + 1, . . . , l}, 1 ≤ i ≤ l ≤ N}. The
multiresolution norm (MR-norm for short) on RN is defined by:

‖(x1, . . . , xN )‖MR := max
I∈I

1√
|I|

∣∣∣∣∣∑
t∈I

xt

∣∣∣∣∣ .
The unit ball in R2 is shown in Figure 1.

It is clear that the residuals satisfy (2) iff ‖r‖MR ≤ C, i.e. they are contained in a
ball around the origin or - equivalently - f̂ is contained in a ball around the data y.
The ability to detect structure in the residuals is mainly due to the fact that the MR-
norm lacks basic invariance properties that e.g. p-norms do possess. In the following, we
highlight some of these (Mildenberger 2008):

Consider the p-norms defined by

‖(x1, . . . , xN )‖p =

{ (∑N
t=1 |xt|p

)1/p

(1 ≤ p <∞)
max{|x1|, . . . , |xN |} (p =∞)

.

Let Sn denote the group of permutations of {1, . . . , N} with

πx := (xπ(1), . . . , xπ(N)) for π ∈ Sn, x ∈ RN .

Furthermore, we consider the sign group Tn := {−1,+1}N with component-wise multi-
plication. We define:

sx := (s1x1, . . . , snxn) for s ∈ Tn, x ∈ RN .
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From the definition of ‖ · ‖p it is clear that ‖πx‖p = ‖x‖p and ‖sx‖p = ‖x‖p for all
x ∈ RN , π ∈ SN , s ∈ Tn and p ∈ [1,∞], since the p-norms depend only on the absolute
values of the components. The multiresolution norm of a vector is in general not invariant
under these transformations. Consider

‖(1,−1, 1)‖MR = 1

‖(1, 1,−1)‖MR =
√

2.

This represents a counter-example for both transformations as the second vector can be
obtained from the first one by either exchanging the second and third components or by
changing their signs.

Let id denote the identity of SN or TN , respectively. Let ρ ∈ SN denote the reverse-
ordering-permutation such that

ρ(x1, . . . , xN ) = (xN , . . . , x1)

for all x ∈ RN . Furthermore, let ν := (−1, . . . ,−1) denote the element of TN that flips
all signs simultaneously. The MR-norm is invariant under these transformations, and
this is a desired property. There are no other transformations in these groups that leave
the multiresolution norm invariant for all x ∈ RN :

Theorem 2 1. For π ∈ SN , ‖πx‖MR = ‖x‖MR for all x ∈ R iff π = id or π = ρ.

2. For s ∈ TN , ‖sx‖MR = ‖x‖MR for all x ∈ R iff s = id or s = ν.

The dependence of ‖x‖MR on the sign pattern of x shows up in particular when
considering vectors that consist of components with the same absolute size:

Proposition 3 Consider the set of all x = (x1, . . . , xN ) with |x1| = · · · = |xN | =: m > 0.

1. ‖x‖MR is maximal iff all components have the same sign. Then ‖x‖MR =
√
Nm.

2. ‖x‖MR is minimal iff the signs are alternating. Then ‖x‖MR = m.

3. ‖x‖MR ≥
√
`m, where ` is the length of the longest run of components with the same

sign.
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Abstract. In this paper we propose the simple bootstrap as a method to ap-
proximate the distribution of the Efron-Petrosian nonparametric maximum
likelihood estimator for doubly truncated data. We use the bootstrap to con-
struct pointwise confidence bands for the lifetime distribution. Simulations
and application to real data are included.

1 Introduction

Truncated data appear in a number of fields, including Astronomy, Economics and Sur-
vival Analysis. In a seminal paper, Turnbull (1976) introduced a substitute for the ordi-
nary empirical distribution function for arbitrarily truncated data, considering also the
case of grouping and censoring. Later, statistical methods were more deeply investigated
for specific situations involving truncation. For example, nonparametric techniques for
left-truncated data were developed in the eighties and early nineties (Woodroofe, 1985;
Stute, 1993), and then they were properly adapted to the presence of right-censoring
(Tsai, Jewell and Wang, 1987; Zhou and Yip, 1999). These methods can be used (after
a suitable re-definition of the variables) to deal also with data which are truncated from
the right, and so the problem of one-sided truncation is well understood. Literature is
much more scarce however for two-sided truncation.

1We thank Rosa Crujeiras for her assistance with the programming in R. Work supported by the
research Grant MTM2005-01274 (FEDER funding included) of the Spanish Ministerio de Educación y
Ciencia, and by the Grant PGIDIT07PXIB300191PR of the Xunta de Galicia.
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Assume that one is interested in a positive random variable (or lifetime) X which is
observed if and only if T0 ≤ X ≤ T , where (T0, T ) is a pair of truncation times assumed to
be independent of X. The sample information is represented by (T0i, Xi, Ti), i = 1, ..., n,
iid data with the same distribution as (T0, X, T ) given T0 ≤ X ≤ T . Examples of
this situation arise in Astronomy (Efron and Petrosian, 1999) and in medical sciences
(Navarro and Ruiz, 1996), among other fields. The nonparametric maximum likelihood
estimator (NPMLE) of the distribution function (df) F of X was introduced in Efron
and Petrosian (1999). However, for the best of our knowledge, no much formal theory is
available for this NPMLE, which is implicitly defined as the maximizer of a conditional
likelihood (see Section 2). The application of bootstrap methods seems to be promising
in this area where little is known about the convergence properties of the estimator.

In Section 2, a bootstrap method for approximating the finite-sample distribution
of the Efron-Petrosian NPMLE is introduced. This bootstrap is then used to defined a
pointwise confidence band for the df of the lifetime. We illustrate the performance of
the bootstrap in a small simulation study. Section 3 is an application of the proposed
methods to some data coming from a recent study on childhood cancer in Portugal
(Moreira and de Uña-Álvarez, 2007).

2 The bootstrapped Efron-Petrosian NPMLE

Following Efron and Petrosian (1999), put (for i = 1, ..., n) Fi = P (T0i ≤ X ≤ Ti | T0i, Ti)
and fi = P (X = Xi | T0i, Ti). Note that, given the (T0i, Ti)’s, the contribution of Xi to
the conditional likelihood is given by fi/Fi. Starting with a initial estimator for fi (e.g.
fi = 1/n for i = 1, ..., n), the EM-algorithm suggested by Efron and Petrosian (1999)
proceeds by updating the estimator via the maximum likelihood equations (see formula
(25) in their paper), until the convergence criterion is reached. We put Fn for the Efron-
Petrosian NPMLE, which is a step function with jump fi at the observed lifetime Xi.
Note that, unlike for one-sided truncation, doube truncation implies that both large and
small values of X are observed with a relatively small probability. In the left-truncated
setup, for example, it is reasonable to expect fi ≥ 1/n for small Xi’s at the optimum, and
this will be indeed the case. However, with doubly truncated data such type of intuition
disappears.

In order to approximate the distribution of the Efron-Petrosian NPMLE, we propose a
simple bootstrap resampling plan (details about simple and obvious bootstrap resampling
under left truncation are given in Gross and Lai, 1996). The plan is as follows: each
datum (T0i, Xi, Ti) is re-sampled (with replacement) with a probability of 1/n, until
a resample of size n, say

{(
T ∗10i , X

∗1
i , T

∗1
i

)
, i = 1, ..., n}, is constructed. The Efron-

Petrosian estimator F ∗1n is computed with this resample. The procedure is repeated a
large number B of times; then, the distribution of Fn is approximated by the empirical
distribution of F ∗1n , ..., F ∗Bn . In order to construct a 100(1− α)% (pointwise) confidence
interval for a specific value F (x), as usual we take the Bα/2 and the B(1−α/2) empirical
percentiles of F ∗1n (x), ..., F ∗Bn (x).

In order to illustrate the performance of the simple bootstrap, we have performed a
small simulation study. The lifetime X was simulated according to a Uniform [0, 15].
The right-truncation time T followed a Uniform [0, 20] model, and (given the T ) the left-
truncation time was computed as T0 = T − 5. Then, the vector (T0, X, T ) is maintained
if T0 ≤ X ≤ T , being rejected otherwise. This simulated scenario was designed in order
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to imitate the real sampling problem in Section 3. Table 1 reports the results achieved
by the 95% bootstrap confidence interval for the nine deciles of X (F (x) = 0.1, ..., 0.9)
when taking B = 500. The sample size was n = 50 and the number of trials was 500.
The coverages were computed as the proportion of intervals (among the 500) containing
the true value of the cumulative distribution. We also computed the mean length of the
confidence intervals along the 500 replicates, as a measure of efficiency. Note that the
intervals are wider around the median, similarly as for the ordinary empirical distribution.
This suggests that the effects of the left and right truncation compensates each other
in the simulated example. We have also considered other sample sizes: n = 100, 150,
and 250. The results achieved by the bootstrap (not shown) indicate that the method
could suffer from a serious bias at both tails of the distribution (deciles 0.1, 0.2, 0.8, and
0.9), with actual coverages decreasing to about 88% (or 75% in the extreme tails). More
investigation is needed to find proper explanations and corrections for this issue.

Deciles Coverage Mean Length

1 0.932 0.1678888
2 0.934 0.2100830
3 0.958 0.2375419
4 0.952 0.2575485
5 0.946 0.2625792
6 0.954 0.2562005
7 0.944 0.2364633
8 0.938 0.2088095
9 0.936 0.1722716

Table 1: Coverages and mean length of Bootstrap Confidence bands along 500 trials
from the simulated model. The sample size was 50, and we took B=500.

3 Application to real data

The childhood cancer data information was gathered from the IPO (Instituto Português
de Oncologia) of Porto by RORENO service (Cancer Registry of the North Region of
Portugal). Data include all children (i.e. people aged below 15 years old) diagnosed from
cancer between 1999 until 2003, resident in any of the five districts in northern region of
Portugal. Children were followed until April 30th 2006.

The data correspond to 409 children diagnosed from cancer, 180 female and 229 male.
The most precocious diagnosis corresponded to a 6 days old baby, while the largest age
at diagnosis was almost 15 years (Moreira and de Uña-Álvarez, 2007).Let X be the age
at diagnosis, let T be the time from birth to end of recruitment (December 31st, 2003).
Note that X is observed only when T − 5 ≤ X ≤ T , and hence the sampling of X is
doubly truncated.

The Efron-Petrosian NPMLE of the age at diagnosis, together with a 95% bootstrap
pointwise confidence band, is reported in Figure 1. For the bootstrap we took B=500.
For comparison purposes, we have included in Figure 1 the ordinary empirical df of the
ages at diagnosis. The similarity between this estimator and the Efron-Petrosian NPMLE
suggests that the sampling bias due to double truncation is not very important in this
case.
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Figure 1: Efron-Petrosian NPMLE (continuous line) for the age at diagnosis of child-
hood cancer (North Potugal data) and 95% bootstrap pointwise confidence band (dotted
lines). For comparison, the ordinary empirical distribution is also included (dashed line).
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U-statistical Kolmogorov-type
tests: large deviations and
asymptotic efficiency

Nikitin Ya.Yu.1

Department of Mathematics and Mechanics. St.Petersburg University

Abstract. We consider U -statistical analogues of Kolmogorov-Smirnov sta-
tistics for goodness-of-fit and symmetry testing and describe their large de-
viations. This enables to calculate their efficiencies and study the conditions
of local asymptotic optimality.

Let X1, . . . , Xn be i.i.d. observations with continuous d.f. F, and let Fn be their em-
pirical d.f. Consider the Kolmogorov statistic Dn = supt |Fn(t)−F (t)|. Large deviations
(LD) of Dn were described long ago in Abrahamson (1967).

Theorem 1 For any a ∈ (0, 1) it holds true that

lim
n→∞

n−1 lnP (Dn > a) = f0(a),

where the function f0 is continuous on (0, 1), and f0(a) = −2a2(1 + o(1)), a→ 0.

This result turned out to be very useful when calculating the Bahadur efficiency of
numerous variants of Kolmogorov-Smirnov tests, see Bahadur (1971).

We are interested in U -statistical generalizations of Theorem 1 and in their applica-
tions to testing. Let h(x1, ..., xm) be a real symmetric kernel of degree m ≥ 1. Consider
the U -statistical e.d.f.

Gn(t) =
(
n

m

)−1 ∑
1≤i1<...<im≤n

I{h(Xi1 , ..., Xim) < t}, t ∈ R1.

1Supported by RFBR grants No. 06-01-00179 and 07-01-00159.
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Let G(t) := P (h(X1, ..., Xm) < t) be continuous. Then the U -statistical generalization of
Kolmogorov statistic Dn is the statistic DUn = supt |Gn(t)−G(t)|. Many goodness-of-fit
and symmetry tests are also based on the Smirnov-type statistic SUn = supt |Gn(t) −
Fn(t)| under appropriate choice of the kernel h.

Consider the following example. Suppose we are testing exponentiality using the
Desu’s characterization, see Desu(1971): Let X and Y be independent non-negative rv’s
having d.f. F. Then the rv’s 2 min(X,Y ) and X are equidistributed iff F (x) = 1 −
exp(−λx), x ≥ 0 with some λ > 0.

Let compare the U -statistical e.d.f.

Ḡn(t) =
(
n

2

)−1 ∑
1≤j<k≤n

I{2 min(Xj , Xk) < t}

with the usual e.d.f. Fn(t), considering the statistic DEn = supt |Ḡn(t) − Fn(t)| and
assuming that its large values are critical. The limiting distribution of

√
nDEn is non-

normal but one can find the critical points via simulation. If we know the logarithmic LD
asymptotics of DUn, then we can calculate its Bahadur efficiency after relatively simple
calculations, see Bahadur (1971) and Nikitin (1995).

The description of LD asymptotics for U -statistics for the time being is studied insuf-
ficiently. The LD principle established in Eichelsbacher and Löwe (1995) is not sufficient
for statistical applications. In Nikitin and Ponikarov (1999) the explicit form of LD’s
was found for bounded non-degenerate and weakly degenerate kernels. However, the
particularity of U -statistical Kolmogorov-Smirnov tests consists in that we have to do
with the supremum of a family of U -statistics.

When studying the LD asymptotics of statistics DUn and SUn we can limit oneself
to one-sided statistics DU±n and SU±n . Each of the one-sided statistics is a supremum in
t ∈ T, where T is some interval in R1, of a family of U -statistics with a kernel Ψ(· ; t)
depending on t. For instance, in the case of statistic DU+

n we have

Ψ(x1, . . . , xm; t) = I{h(x1, ..., xm) < t} −G(t), t ∈ R1,

while for the statistic SU+
n one has for t ∈ R1

Ψ(x1, . . . , xm; t) = I{h(x1, ..., xm) < t} −m−1(I{x1 < t}+ · · ·+ I{xm < t}).

For each t the kernels Ψ(· ; t) are centered and bounded. Consider their projections

ψ(s; t) = E(Ψ(X1, ..., Xm; t)|X1 = s),

their variance functions σ2
ψ(t) = Eψ2(X1; t) and the maxima of these variance func-

tion ψ2
0 := supt σ2

ψ(t). Let introduce the following condition of non-degeneracy of these
families.

We call the family of U -statistics {Un(t), t ∈ T} with the family of kernels Ψ(· ; t)
non-degenerate, if its variance function σ2

ψ(t) = Eψ2(X1; t) is positive for any t ∈ T with
possible exception of the ends of the interval T.

For instance, in the case of the statistic DE+
n the variance function is 1

4 exp(−t)(1−
exp(−t)), t ≥ 0, while ψ2

0 = 1/16.
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We impose also the following monotonicity condition on the family Un(t). Let suppose
that there exists the partition of the interval T in N parts t0 < t1 < · · · < tN , so that
for any k = 0, . . . , N − 1

sup
tk≤t<tk+1

Un(t) ≤ Un(tk+1) + ∆n(N),

where the rv’s ∆n(N) decrease fastly as n and N grow in the following sense: there exists
such sequence {τN}, τN →∞ as N →∞, that

lim
N→∞

lim
n→∞

n−1 lnP (∆n(N) > τN ) = −∞.

It is easy to prove that the statistics DU±n and SU±n satisfy the condition of mono-
tonicity.

Theorem 2 Suppose that the family of U -statistics Un(t) is based on centered, bounded
and non-degenerate kernels and satisfies the monotonicity condition. Then there exists
such continuous function v0 that for sufficiently small a > 0 one has

lim
n→∞

n−1 lnP (sup
t
Un(t) > a) = v0(a).

Moreover, as a→ 0, one has v0(a) = −a2/2m2ψ2
0 +O(a3).

The proof is involved and uses variational methods related to Sanov theorem and
some ideas from nonlinear functional analysis together with exponential inequalities for
the tails of U -statistics.

Consider some examples and statistical applications.
1. Desu test of exponentiality. It follows easily from Theorem 2 that for some con-

tinuous function v1 one has

lim
n→∞

n−1 lnP (DEn > a) = v1(a) = −2a2 +O(a3), a→ 0. (1)

2. One more characterization of exponentiality belongs to Puri and Rubin (1970): let X
and Y be independent rv’s with the same absolutely continuous d.f. F on R+. Then d.f.
F is exponential iff |X − Y | is distributed as X.

U -statistical Kolmogorov-type test statistic PRn corresponds to the family of U -
statistics with the kernel

Ψ(x1, x2; t) = I{|x1 − x2| < t} − 1
2

(I{x1 < t}+ I{x2 < t}), t ≥ 0,

while the variance function has the form σ2
ψ(t) = 1

12e
−t(1 + e−t− 2e−2t), t ≥ 0, with the

maximum 10+7
√

7
648 . Hence there exists such continuous function v2, that

lim
n→∞

n−1 lnP (PRn > a) = v2(a) = −7
√

7− 10
3

a2 +O(a3), a→ 0.

Next example is connected with testing of symmetry.
3.Let use the characterization of symmetry due to Baringhaus and Henze (1992): the d.f.
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of two i.i.d. rv’s X and Y is symmetric with respect to zero iff |X| and |max(X,Y )| are
equally distributed.

Let Ln(x) = n−1
∑n
j=1 I(|Xj | ≤ x), and let

G∗n(x) =
(
n

2

)−1 ∑
1≤j<k≤n

I(|max(Xj , Xk)| ≤ x), x ≥ 0.

Following to Baringhaus and Henze (1992), consider the statistic

BHn = sup
x≥0
|Ln(x)−G∗n(x)|

which is fit for the theory developed above. Hence for some continuous function v3 we
have

lim
n→∞

n−1 lnP (BHn ≥ a) = v3(a) = −27
8
a2 +O(a3), a→ 0.

Similarly are studied the statistic for testing of exponentiality based on the simplified
”loss-of-memory” property from Angus (1982), the statistic for symmetry testing from
Abbakumov and Nikitin (1993), the statistic for testing of normality based on Polya
characterization, and some others.

U -statistical Kolmogorov-Smirnov tests are consistent against a very broad class of
alternatives. In the same time, their local Bahadur efficiency for standard alternatives
is not very high and is usually inferior to integral tests. Simulation results support this
observation.

We are able to describe the special set of alternatives for which the considered tests
are locally asymptotically optimal in the Bahadur sense using the variational techniques
developed in Nikitin (1995). For such alternatives the use of U -statistical Kolmogorov-
Smirnov tests is just well-founded.
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Power behaviour of
permutation tests for fixed
sample size and increasing
number of variables

Fortunato Pesarin
Department of Statistics. University of Padova

Luigi Salmaso
Department of Management and Engineering. University of Padova

Abstract. In several applicational fields, it may happen that the number of
variables is very much larger than that of subjects. It can be proven that, for
a given and fixed number of subjects, when the number of variables diverges
and the noncentrality parameter of the underlying population distribution
increases with respect to each added variable, then power of multivariate
permutation tests based on Pesarin’s combining functions (Pesarin, 2001)
is monotonically increasing. These results allow us to introduce the notion
of “variable-based consistency” for permutation tests based on combination.
Sufficient conditions are given in order that the rejection rate converges to one,
for fixed sample sizes and attainable α-values, when the number of variables
diverges.
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A comparison between two
multivariate survival models
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Abstract. We present a comparison between a joint proportional hazards
frailty model with gap times and survival and a similar joint frailty model
for survival where the covariates are introduced assuming an accelerated life
model. The models are evaluated by simulation and illustrated with a study
of patients with lung cancer.

The heterogeneity is modelled by a group specific quantity which can be interpreted
as an unobserved covariate common to the individuals, the frailty. It is usual to consider
that survival times depend on the frailty by a proportional hazard model which induce
the association between observed times.

There are a limited number of publications dealing with the joint modelling of recur-
rent events and terminal event such as death. Lancaster and Intrator (1998) and Liu,
Wolfe and Huang (2004) consider each event time measured from the beginning of the
study. Xueling Huang and Lei Liu (2007) consider the distributions of gap times between
consecutive recurrent events:

λj(tj/zj ,W, Tk, k < j) = λ0j(tj)W exp(βTj zj), j > 1

ψ(t/z0,W ) = ψ0(t)W γexp(αT z0)

where W is the frailty, Zj the covariates, is the jth gap-specific covariate effect and j
survival times.
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We consider a joint proportional frailty model, Cox (1972), with a gamma distribution
for frailty W and we introduce the covariates assuming an accelerated life model. We
call that mixed model:

λj(tj/zj ,W, Tk, k < j) = λ0j(tj exp(βTj zj)) W exp(βTj zj), j > 1

ψ(t/z0,W ) = ψ0(t exp(βTj zj))W
γexp(αT z0)

It is possible no specify the marginal distributions, this is a semiparametric model
and the regression parameters are updated by a similar method to the maximization of
the partial likelihood for the Cox (1972) proportional hazards model. The R package
is used for data generation and to fit the model and we illustrate this study with lung
cancer patient data.
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Estimation and testing non
linearity effects in additive
models in censored regression

Javier Roca-Pardiñas
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Jacobo de Uña-Álvarez
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Abstract. In this paper we consider partially linear additive models in cen-
sored regression. We propose a randomly weighted version of the backfitting
algorithm that allows for the nonparametric estimation of the effects of the
covariates on the response. Moreover a procedure for testing nonlinearity
effects is proposed. Backfitting theory is difficult in this context, and a boot-
strap procedure is therefore provided for estimating the distribution of the
test statistics. Given the high computational cost involved, binning tech-
niques are used to speed up the computation in the estimation and testing
process. Simulation results and the application to real data reveal that the
predictor obtained with the additive model performs well, and that it is a
convenient alternative to the linear predictor when some nonlinear effects are
suspected.
Keywords: additive models, backfitting, bootstrap.

1 Introduction

Let Y be a lifetime which is observed under censoring from the right and Let X =
(X1, ..., Xp)

′ be a vector of p covariates. Put f(x) = E [ψ(Y ) | X = x] for the regression
function of ψ(Y ) on X, so the model becomes

ψ(Y ) = f(X) + ε = f(X1, ..., Xp) + ε (1)
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where the error term satisfies E [ε | X] = 0 and X and ε are independent. Taking
ψ(y) = ln y is useful in regression analysis because ψ(Y ) is no longer restricted to (0,∞).
This is the so-called accelerated failure time model, widely used to analyze survival data
in the regression framework.

In the censored setup, we observe (X1, Z1, δ1) , ..., (Xn, Zn, δn) independent obser-
vations with the same distribution as (X, Z, δ), where Z = min(Y,C), C is the right-
censoring variable assumed to be independent of Y , and δ = I (Y ≤ C). Unlike in the
”iid” scenario, the weight associated to the i-th observation (Xi, Zi, δi) under censoring
will be typically the jump of the Kaplan-Meier estimator at each point Zi (i = 1, ..., n),
namely

Wi =
δi

n−RankZi + 1

∏
RankZj<RankZi

[
1− δj

n−RankZj + 1

]

where RankZi is the rank of Zi among the ordered Z’s and where (in case of ties)
uncensored observations are assumed to preceed the censored ones.

In this regression context we consider a flexible approach to estimate the regression
function f(X) through a partailly linear additive model (Hastie and Tibshirani, 1990)
given by

f(X) = α+
∑p

j=1
(αjXj + fj(Xj)) (2)

being α, α1, . . . , αp coefficients and f1, . . . , fp begin one dimensional functions. In the
previous moddel, the effect of each covariate Xj is descomposed in a parametric compo-
nent, αjXj , and a purely nonparametric component, fj(Xj). Note that this model nests
linear models, additive models and partial additive models as particular cases.

2 Testing for Non Linearity Effects

We propose the bootstrap resampling techniques to test for nonlinearity effects in the
semiparametric additive model specified in (2). For a given subset of covariates Xj1 , . . . ,
Xjq with 1 ≤ j1 < . . . < jq ≤ p, interest centers on the null hypothesis H0 : fj1 = . . . =
fjq = 0, namely, that the effects of the given subset of covariates are linear. For this
purpose L1 norm is considered yielding the test statistic

T =
∑q

l=1

∑n

i=1
|f̂jl(Xijl)|

It must be remarked that, if the null hypothesis is verified, then T should be close to
zero, but it will generally be positive. Thus, the test rule for checking H0 with significance
level α is that the null hypothesis is rejected if T is larger than its upper α- percentile.
It is well know that in these kind of tests asymptotic theory is little helpful to determine
that percentile, and resampling methods like bootstrap are applied instead.
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3 Estimation. Bandwidth selection and
computational aspects

We have developed an algorithm that enables model in (2) to be estimated. The proposed
algorithm is a modified version of the weighted backfitting algorithm (Opsomer, 2000).
At each loop of the algorithm are obtained the linear coefficients α̂, α̂1, . . . , α̂p by fitting
a linear weighted model. Moreover the algoritm cycles through each of the combinations
Xj for 1 ≤ j . . . ≤ p, and the nonparametric estimates fj , are obtained by applyin local
linear kernel smoothers (Ruppert and Wand, 1994) to the corresponding partial residuals.
These residuals are obtained by removing the estimated effects of the other covariates.

It is well known that the nonparametric estimates f1, . . . , fp heavily depend on the
bandwidths h1, . . . , hp used in the local linear kernel estimates. Various proposals for
an optimal selection have been suggested for the additive models, yet the difficulty of
asymptotic theory in a backfitting context means that nowadays optimal selection is
still a challenging open problem. Moreover, a distinction should be drawn between the
bandwidth choice for estimation and for testing. Our computational experience has
shown that, whereas nonlinear terms tend to be smoothed out and the null hypothesis
of no interaction never rejected in the case of large bandwidths, in the case of small
bandwidths the nonlinear terms tend to prove significant. Cross-validation was used for
the automatic choice of bandwidths.

The bootstrap resampling techniques are time-consuming processes, because it is
necessary to estimate the model a great number of times. Moreover, the use of cross-
validation technique (explained below) for the choice of the bandwiths implies a high
computational cost, inasmuch as it is necessary to repeat the estimation operations sev-
eral times in order to select the optimal bandwidths. To speed up this process, we
used binning-type acceleration techniques (Fan and Marron, 1994) to obtain the binning
approximations of f̂j in each of the iterations of the estimation algorithm.

4 Simulations and application to real data

To assess the validity of this estimation procedure, a simulation study is performed.
Simulation results have shown that the proposed algorithm works well in practice, and
that the additive model is a convenient alternative to linear regression in the presence of
nonlinear effects.

Finally, an application to real data has served for illustrating the potential advantages
of our censored additive model when compared to more classical regression approaches.
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Abstract. In this paper, we propose two families of robust kernel–based
regression estimators when the regressors are random objects taking values
in a Riemannian manifold. We consider estimators based on kernel methods
and estimators based on k-nearest neighbor kernel methods. Strong uniform
consistency results as well as the asymptotically normality of both families
are established.

1 Summary

Nonparametric inference has gained a lot of attention, in recent years, in order to ex-
plore the nature of complex nonlinear phenomena. The idea of nonparametric inference
is to leave the data to show the structure lying beyond them, instead of imposing one.
Nadaraya (1964) and Watson (1964), introduced kernel–based estimators for the regres-
sion function r(x) = E(y|x), when dealing with independent observations {(yi,xi)}ni=1

such that yi ∈ IR, xi ∈ IRd. Nearest neighbor with kernel methods for the regression
function were introduced by Collomb (1980).

Both of them are a weighted average of the response variables and thus, they are
highly sensitive to large fluctuations of the responses. As mentioned by several authors,
the treatment of outliers is an important step in highlighting features of a data set since
extreme points can affect the scale and the shape of any estimate of the regression function
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based on local averaging, leading to possible wrong conclusions. This has motivated the
interest in combining the ideas of robustness with those of smoothed regression, to develop
procedures which will be resistant to deviations from the central model in nonparametric
regression models. As it is well known, robust estimators can be obtained via local
M−estimates. The first proposal of robust estimates for nonparametric regression was
given by Cleveland (1979) who adapted a local polynomial fit by introducing weights
to deal with large residuals. See also, Tsybakov (1982) and Härdle (1984), who studied
pointwise asymptotic properties of a robust version of the Nadaraya–Watson method.
These results were extended to M−type scale equivariant kernel estimates by Härdle
and Tsybakov (1988) and by Boente and Fraiman (1989) who also considered robust
equivariant nonparametric estimates using nearest neighbor weights. A review of several
methods leading to robust nonparametric regression estimators can be seen in Härdle
(1990).

The proposals mentioned above assume that the predictors x belong to a subset of
IRd with non empty interior and therein, the euclidean structure of IRd is considered.
However, in many applications, the predictors x take values on a Riemannian manifold
more than on IRd and this structure of the explanatory variables needs to be taken into
account when considering neighborhoods around a fixed point x. Several authors such
as, Mardia and Jupp (2000), Hall et al. (1987) and Fischer et al. (1993) discussed
methods for spherical and circular data analysis while generalizations to different types
of manifolds have been studied by Lee and Ruymgaart (1996), Hendriks (1990) and
Hendriks et al. (1993). An approach based on the Riemannian geodesic distance on the
manifold was considered by Pelletier (2005) for the problem of estimating the density
of random objects on a compact Riemannian manifold and also by Pelletier (2006) for
that of estimating the regression function which is the aim of our paper. More precisely,
let (M, g) be a closed Riemannian manifold of dimension d and let (y,x) be a random
vector such that y ∈ IR and x ∈ M . The classical nonparametric setting assumes
that the response variables have finite expectation and focusses on the estimation of
the regression function r(p) = E(y|x = p). Pelletier’s (2006) idea was to build an
analogue of a kernel on (M, g) by using a positive function of the geodesic distance on
M , which is then normalized by the volume density function of (M, g) to take into account
for curvature. Under classical assumptions on the kernel and the bandwidth sequence,
Pelletier (2006) derives an expression for the asymptotic pointwise bias and variance as
well as an expression for the asymptotic integrated mean square error.

As in the Euclidean setting, the estimators introduced by Pelletier (2006) are a
weighted average of the response variables yi with weights depending on the distance
between xi and p implying that they will suffer from the same lack of robustness that
the Nadaraya–Watson estimators with carriers in the Euclidean space IRd. In this pa-
per we consider two families of robust estimators for the regression function when the
explanatory variables xi take values on a Riemannian manifold (M, g). The first family
combine the ideas of robust smoothing in Euclidean spaces with the kernel weights in-
troduced in Pelletier (2005). The second family generalises the proposal given by Boente
and Fraiman (1989) who considered robust nonparametric estimates using nearst neigh-
bor weights when the predictors x are on IRd. Local M−estimators adapted to regressors
lying on a d−dimensional Riemannian manifold will be introduced and their asymptotic
properties will be studied. It is worth mentioning that robust estimators for directional
data were considered among others by He (1992), Ko and Guttorp (1988) and also by
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Agostinelli (2007) who studied robust methods for circular data analysis.
As in Pelletier (2006), our two families of estimators will be consistent with standard

kernel or k-nearest with kernel estimators on Euclidean spaces, i.e., it reduces to the
local M−estimator based on standard kernel weights when M is IRd. Moreover, they
converge at the same rate as the Euclidean kernel estimators. This result generalizes the
conclusions obtained by Pelletier (2006) from the pointwise mean square error.

This aim of this paper is to present two versions of robust local M−estimators of the
regression function adapted to the fact that the explanatory variables xi take values on a
Riemannian manifold. Uniform consistency and asymptotic distributions of the proposed
estimators are obtained under regular assumptions. For small samples, the behavior of
the classical approach is compared through a Monte Carlo study under normality and
contamination.
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proches avec noyau: Quelques propiétés de convergence ponctuelle. Lecture Notes in
Mathematics 821, 159-175.

Fischer, N.I., Lewis, T. and Embleton, B.J.J. (1993). Statistical Analysis of Spherical
Data. Cambridge University Press, Cambridge.

Ko, D. and Guttorp, P. (1988). Robustness of estimators for directional data. Annals of
Statistics 16, 609-618.

Hall, P. , Watson, G.S. and Cabrera, J. (1987). Kernel density estimation with spherical
data. Biometrika 74, 751-762.
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Abstract. A number of studies have provided evidence that correlations in
stock returns are asymmetric, e.g. higher correlations during bear markets.
In this paper we confirm such results and present an approach for mean-
variance portfolio selection, both by using a new measure for local correlation
introduced by Hufthammer and Tjøstheim (2008).

1 Introduction

Correlation is an important parameter in modern portfolio theory. It is used here to
measure the dependence between returns of different assets. The work of Markowitz
(1952) introduced the mean-variance portfolio theory, which is one of the most widely
used approaches in portfolio selection. The idea is simple; low correlated assets are good
for diversification, while highly correlated assets should be avoided.

However, several studies have documented asymmetric characteristics of asset returns,
in particular asymmetric correlations in which stock returns tend to have higher correla-
tions with the market when it goes down than when it goes up, see Campbell et al (2002)
and Lognin and Solnik (2001). Further, assessing asymmetric correlation requires care,
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as a correlation computed conditional on some variables being high or low is a biased
estimator of the unconditional correlation, see Forbes and Rigobon (2002) and Hong et
al (2007). Other papers have documented that correlations across stock markets change
over time, see e.g. Ramchand and Susmel (1998).

Thus the benefit of diversification will erode if the correlations are asymmetric. Sev-
eral proposals have been made to correct for these shortcomings, e.g. portfolio opti-
mization models that allow correlation of asset returns to vary over time and the use of
conditional mean-variance portfolio optimization, see e.g. Campell et al (2002).

In this paper we introduce the use of a local correlation measure, proposed by
Hufthammer and Tjøstheim (2008), which is able to capture the state-varying corre-
lations and can be used for portfolio selection. The local correlation estimator is for
completeness presented in section 2. In section 3 empirical evidence of the existence of
asymmetric correlations in market returns is provided, while section 4 presents a port-
folio selection method based on mean-variance portfolio theory and the local correlation
estimator.

2 Local correlation

Several attempts have been made to construct local dependence measures taking into ac-
count the values of the variables involved. For example, for large values of two stochastic
variables X and Y the local correlation may be higher than for small values of X and Y .
In Hufthammer and Tjøstheim (2008) the authors present a new approach to this prob-
lem by approximating the joint distribution of X and Y by a family of bivariate normal
distributions and by using local likelihood to obtain an estimate of local correlation. The
asymptotic analysis poses challenges that are quite different from those of traditional non-
parametric regression, and the results imply slower rates of convergence. For a complete
introduction to the local dependence measure, see Hufthammer and Tjøstheim (2008).
In this paper we use this new local correlation estimator to examine local correlations in
market returns.

3 Empirical analysis of financial returns dependence

The data is daily international equity price index from DataStream for the United States
(S&P 500), the United Kingdom (FTSE 100), France (CAC 40) and Germany (DAX
30). Further, we calculate returns as 100× (ln(pt)− ln(pt−1)), where pt is the price index
from DataStream. These markets have earlier been studied by Longin and Solnik (2001)
and Cambell et al (2002), but we now extend the observation span from May 1990 to
31 December 2007. In total the data set consists of 4588 daily observations. Summary
statistics for the international equity returns are shown in table 3.

The daily returns are in the range from over −9% to around 7.5%. All series have a
negative skewness, and the kurtosis are generally high, between 6 and 7. This implies a
deviation from the normal distribution.

In table 2 the correlation estimates for the returns are given. The correlations between
the European indices are around 0.7, while the correlations between the European and
the S&P 500 are much lower, just above 0.4. This is in line with the previous mentioned
studies.
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Statistics S&P 500 FTSE 100 CAC 40 DAX 30

Mean 0.031 0.022 0.021 0.032
Variance 0.965 1.013 1.659 1.903
Maximum return 5.573 5.903 7.002 7.552
Minimum return -7.112 -5.885 -7.678 -9.871
Skewness -0.122 -0.138 -0.116 -0.271
Kurtosis 7.019 6.269 6.054 7.377

Table 1: Summary index statistics, May 1990 - December 2007.

S&P 500 FTSE 100 CAC 40 DAX 30

S&P 500 1
FTSE 100 0.412 1
CAC 40 0.426 0.773 1
DAX 30 0.455 0.675 0.766 1

Table 2: Correlation of index returns, May 1990 - December 2007.

We next turn to estimates of the local correlation. Figure 1 shows the estimated
local correlation between the returns from S&P 500 and FTSE 100 in several gridpoints.
The local correlations are close to the classical correlation estimate in interior points,
but larger in the bottom left of the plot, that is, when the returns are negative. The
estimator of local correlation depends on two smoothing parameters (bandwidths), they
are for now choosen by a simple method (i.e. the standard deviation times a constant).
If the bandwidths are large, the local correlation will be approximately similar to the
correlations in table 2.

Similar plots are obtained for the other pairwise market returns. These plots show
different local correlations across different gridpoints, in particular high local correlation
when market returns are negative.

The local correlations are also computed on different sub-periods (i.e. five years
intervals), and they show that the local correlations may also be time-varying, consistent
with similar results for classical correlation, see e.g. Longin and Solnik (1995).

4 Portfolio selection

Mean-variance based portfolio construction is the most common approach for asset man-
agement. Introduced by Markowitz (1952), the measures of return and risk are the mean
and variance of the portfolios’ returns, respectively. Portfolios are considered mean-
variance efficient if they minimize the variance for a given mean return or maximize the
return for a given level of variance.

Assume N risky assets with mean premium return vector µ and covariance matrix Σ.
Let X be a vector of portfolio weights for the N assets. The optimization problem is as
follows; an efficient portfolio is determined by minimizing the portfolio variance, subject
to a target expected portfolio premium return (µm) and that all wealth is invested in the
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Figure 1: Local correlation - S&P 500 (y) and FTSE 100 (x).

risky assets, i.e.

min
x

X′ΣX s.t. X′µ = µm and X′1 = 1. (1)

The optimal portfolio weights are calculated by setting up the Lagrangian and solving
the corresponding first-order condition. Since we find evidence of larger local correla-
tions when markets fall, the benefits from diversification will be severely eroded. This
has implications for portfolio selection. We therefore suggest using the local correlation
(covariance) for portfolio construction, and we show that this will result in other port-
folio weights. Some preliminary results concering the asymptotic distributions of these
estimators are provided.
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Abstract. The survival of Gastric Cancer Patients depends on various initial
risk factors such as age, delay time between first simptoms and diagnosis,
type of tumor, type of treatment and the effects of these risk factors may
change with time: some effects may vanish whereas other remain constant.
An omnibus goodness-of-fit test is developed to test whether the time-varying
Cox model fits the data.

1 Introduction

In the context of semiparametric regression with censored data, a lot of models are avail-
able to account for the relationship between the survival time and a set of explanatory
variables: Cox proportional hazards model, log-logistic model, etc. In a general way,
these models can be written as linear regression models, where the dependent variable

1The authors would like to thank S. Pita Fernández and E. Casariego Vale for the Gastric Cancer
Data



ISNI2008 International Seminar on
Nonparametric Inference

159

is a monotone transformation (φ) of the survival function (S). Particular choices of φ
give well known models in survival analysis.The choice φ(u) = log( u

1−u ) gives the logistic
model, φ(u) = − log(u) gives the additive risk model and φ(u) = log(− log(u)) leads to
the proportional hazards model.

In these models, the regression coefficients are often supposed to be constants. But in
practice, the structure of the data might be more complex, in the sense that it is better
to consider coefficients that can vary over time and also data that can be left-truncated.

More precisely, let Y denote the survival time, T the truncation time and C the
censoring time. When data are left-truncated and right-censored we observe (Z, T, δ)
only if Z ≥ T , where Z = min{Y,C} and δ = I{Y≤C}. Let (Zi, Ti, δi, Xi), i = 1, . . . , n
be an iid sample from (Z, T, δ,X), where X is a (one-dimensional) covariate. We are
interested in the relationship between the survival function of Y , S(z|X) = P (Y > z|X)
and X. We like to test whether this relationship is of polynomial type, via a known
monotone transformation φ : [0, 1]→ R of the survival function, i.e.:

φ(S(z|X)) = β0(z) + β1(z)X + . . .+ βp(z)Xp, (1)

for some known p. No assumption is made on the form of the survival function S(z|X),
except for the usual smoothness assumptions.

The appropriateness of the parametric modelling of regression data may be judged
by comparison with a semi-parametric estimator of the response. For this purpose one
may use a squared deviation measure between the two fits. The sum of the squared
deviation over all the values of the covariates may be used as a test statistic for testing the
parametric model where the critical value is determined from the asymptotic distribution
of this statistic.

To be more precise, for a given φ, H0 : ∃β(z) such that (1) holds is tested against
HA : (1) does not hold for any β(z). We compare a semiparametric estimator of the
response, φ(Ŝ(z|X)), with its parametric counterpart, β̂(z)X (same technique as in Cao
& González-Manteiga (2007)). Where Ŝ is a conditional Kaplan-Meier type estimator
with truncated data for S, see Iglésias-Pérez & González-Manteiga (1999), and β̂(z) is the
least-squares estimator proposed in Teodorescu et al (2008). A large deviation between
them indicates the lack of fit of the parametric form and thus the rejection of the null.

To measure this deviation, we study a kind of L2 - distance between these two:

Φ̂n(β̂(z)) =
1
n

n∑
r=1

(
φ(Ŝ(z|Xr))− (β̂(z)X)

)2

.

Hence, it is reasonable to reject H0 when Φ̂n(β̂(z)) is large. We have to measure this
distance over the whole observed time-period, thus we shall take the integral over an
interval [a, b], for some given a and b:

Tn =
∫ b

a

Φ̂n(β̂(z))dz (2)

We should also multiply this quantity by a normalizing sequence in order to have
a limiting distribution. This leads to the following test statistic: nh1/2Tn that has
asymptotic normal distribution under some regularity conditions, see Teodorescu & Van
Keilegom (2008).
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The convergence of the distribution of the test statistic nh1/2Tn to a normal distri-
bution is quite slow, so that it seems more appropriate not to use the asymptotic critical
values in practice. We therefore compute the critical values based on a bootstrap method.
The procedure is as folows:

1. Choose a bandwidth h in the interval (0, µ(supp(X))) and a pilot bandwidth g
(larger than h), where µ is the Lebesgue measure.

2. For all z ∈ {Z1, . . . , Zn} and x ∈ {X1, . . . , Xn}:

a) Estimate S(z|x), G(z|x) and L(z|x) by the conditionals estimators Ŝg(z|x),
Ĝg(z|x) and L̂g(z|x), respectively, see Iglesias-Pérez & González-Manteiga
(1999).

b) Replace S(z|x) by Ŝg(z|x) in (1) and estimate β0(z), . . . , βp(z) by the least
squares estimator proposed by Teodorescu et al. (2008) to obtain β̂0,g(z), . . . ,
β̂p,g(z). Plug-in these estimators into (1) and re-estimate S(z|x) by

S̃g(z|x) = φ−1(β̂0,g(z) + β̂1,g(z)x+ . . .+ β̂p,g(z)xp).

3. For b = 1, . . . , B:

a) For every i = 1, . . . , n draw random observations Y ∗i , C∗i and T ∗i from S̃g(·|Xi),
Ĝg(·|Xi) and L̂g(·|Xi), respectively. Compute Z∗i = min{Y ∗i , C∗i }, δ∗i =
1{Y ∗i ≤C∗i } and simulate new values Y ∗i , C∗i and T ∗i if T ∗i > Z∗i .

b) Use this resample {(T ∗1 , Z∗1 , δ∗1 , X1), . . . , (T ∗n , Z
∗
n, δ
∗
n, Xn)} to estimate a boot-

strap version of the conditional survival function, Ŝ∗h(z|Xi) (i = 1, . . . , n) us-
ing the bandwidth h. This bootstrap version is used to obtain the bootstrap
vector of coefficients β̂∗(b)h =

(
β̂
∗(b)
0,h (z), . . . , β̂∗(b)p,h (z)

)
using the least squares

estimator, and to obtain the bootstrap version Φ̂∗n
(
β̂
∗(b)
h (z)

)
of Φ̂n

(
β̂(z)

)
.

c) Compute the bootstrap version of the test statistic nh1/2Tn, which is given by:

nh1/2T ∗n,b = nh1/2

∫ b

a

Φ̂∗n
(
β̂
∗(b)
h (z)

)
dz

' n
√
h

n−1∑
i=1

Φ̂n
(
β̂∗h,b(Z

∗
i ))(Z∗i+1 − Z∗i

)
4. Order the obtained test statistics and take nh1/2T ∗n,[(1−α)B] which approximates

the (1− α)-quantile of the distribution of nh1/2Tn under H0.

5. If nh1/2Tn > nh1/2T ∗n,[(1−α)B], then reject H0, otherwise do not reject H0.

2 Gastric Cancer Data - a case study

These procedures are applied to data on people suffering from gastric adenocarcinoma.
The survival of gastric cancer patients depends on various initial risk factors such as age



ISNI2008 International Seminar on
Nonparametric Inference

161

at diagnosis, delay time between first simptoms and diagnosis, extention of tumor (TNM
classification), location of tumor, presence of metastasis, type of treatment, sex of the
person and others. These risk factors determine the chance of survival for the patients.
However, the effects of these risk factors may change with time. Some effects may vanish
whereas other remain constant. We analyse the survival of 945 patients treated in the
Hospital Xeral-Calde in Lugo, Spain. Previous studies on these data (see Casariego-Vales
et al (2001), Rabuñal et al. (2004)) have considered the Cox proportional hazards model
with constant coefficients as being appropriate for the data without really checking the
hypothesis. The variable of interest was considered to be the time from diagnostic until
death and censoring occured when the patients were lost to follow up, died from another
reason not related to the desease or were still alive at the end of the study.

These studies showed that the variables with the most impact on the survival of
a patient were: age, extention of tumor, presence of metastasis, type of surgery and
diagnostic delay.

Here we are only taking into consideration these variables that showed the most
impact on the survival time and we are going to make a different approach on the data,
by considering as the target population, not only the patients diagnosed in the hospital
as previously done, but all the people suffering of gastric adenocarcinoma in the region.
This is done by taking as the variable of interest the time from the first symptoms to
death and by considering that not only censoring can occur (by the reasons stated above),
but also truncation: those people that die before getting a diagnose, are considered as
being truncated.

The considered model is the Cox proportional hazards model with time dependent
coefficients, which can be written in the following form:

φ(S(z|X)) = β0(z)+β1(z)X1 +β2(z)X2 +β3(z)X3 +β4(z)X4 +β5(z)X5 +β6(z)X6, (3)

where φ(u) = log(− log(u)), X1 and X2 are the indicators of having TNM classification
2 and 3, X3 and X4 are the indicators for the type of surgery, X5 is the idicator for the
presence of metastasis and X6 is the age at diagnosis minus its mean (67.71606 years).

So we will test:

H0 : ∀z ∃β(z) ∈ R7 such that (3) holds,

against Ha : (3) does not hold for any β(z).

Under H0, the coefficients βi(z) (i = 0, . . . , 6) were estimated via the least squares
estimator proposed in Teodorescu et al. (2008) and the optimal bandwidth h = 45 was
selected by means of the bootstrap method proposed above among {25, 30, 35, 40, 45, 50}.
We took g = 1.5h, α = 0.05 and we conducted 500 bootstrap simulations. The estimated
p-value was found to be 0.7528. Hence, we do not reject H0, i.e. we conclude that the
proportional hazards model with time varying coefficients is appropriate for these data.
An estimator for the coefficients βi(z) as well as their 95 % pointwise confidence intervals
are given.
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Garćıa-Soidán, P., 104

Genton, M.G., 99
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